
Algorithms and Data Structures

Module 2

Lecture 8
Greedy algorithms. 

Minimum Spanning Tree Problem. 
Prim’s algorithm.



MST: algorithms

2

A greedy strategy: start with an empty subgraph; add 
the lightest edge such that it does not create a cycle on 
the subgraph (the lightest safe edge).

•Kruskal’s algorithm: build a spanning forest, adding 
edges until there is one component (tree).

•Prim’s algorithm: build the tree, adding edges until it 
spans the graph.



MST: algorithms

3

Prim’s algorithm

Kruskal’s algorithm

http://jeffe.cs.illinois.edu/teaching/algorithms/



Prim’s algorithm

4

Given a connected graph 𝐺 𝑉, 𝐸 , 𝑉 = 𝑛, |𝐸| = 𝑚.

1. 𝑇 𝑉𝑇, 𝐸𝑇 : 𝑉𝑇 = {𝑠}, 𝐸𝑇 = ∅

2. Array C[1..n], P[1..n].
• 𝐶 𝑠 = 0; P[s]=s.
• For each 𝑣 ∈ 𝑉\V𝑇: 𝐶 𝑣 = 𝑤(𝑠, 𝑣); 𝑃 𝑣 = 𝑠

3. While 𝑉𝑇 ≠ 𝑉:
• Find 𝑣 ∈ 𝑉\V𝑇: 𝑣 has minimum 𝐶[𝑣]
• Add 𝑣 to V𝑇; add (𝑃 𝑣 , 𝑣) to 𝐸𝑇
• Update_C&P(v).



Prim’s algorithm

5

Update_C&P(v)
For each 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ 𝑉\V𝑇 and 𝐶 𝑢 > 𝑤(𝑣, 𝑢):

𝐶 𝑢 = 𝑤(𝑣, 𝑢)

𝑃 𝑢 = 𝑣



Prim’s algorithm

6



Prim’s algorithm

7

Given a connected graph 𝐺 𝑉, 𝐸 , 𝑉 = 𝑛, |𝐸| = 𝑚.

1. 𝑇 𝑉𝑇, 𝐸𝑇 : 𝑉𝑇 = {𝑠}, 𝐸𝑇 = ∅

2. Array C[1..n], P[1..n].
• 𝐶 𝑠 = 0; P[1..n]=s.
• For each 𝑣 ∈ 𝑉\V𝑇: 𝐶 𝑣 = 𝑤(𝑠, 𝑣); 𝑃 𝑣 = 𝑠

3. While 𝑉𝑇 ≠ 𝑉:
• Find 𝑣 ∈ 𝑉\V𝑇: 𝑣 has minimum 𝐶[𝑣]
• Add 𝑣 to V𝑇; add (𝑃 𝑣 , 𝑣) to 𝐸𝑇
• Update_C&P(v).

n-1 iterations

???
O(1)

???



Prim’s algorithm

8

Let us evaluate the total complexity of Update_C&P
calls. Actually, we update C[] and P[] at most one 
time for each edge => the total complexity is 𝑂(𝑚).

The complexity of searching for the closest 𝑣 ∈ 𝑉\V𝑇
depends on the implementation.



Prim’s algorithm

9

1) Naïve implementation: scan 𝑉\V𝑇 and search for the 
minimum value of 𝐶[𝑣]. Each scan needs 𝑂(𝑛) time 
=> the total time complexity is 𝑂 𝑚 + 𝑛2 = 𝑂(𝑛2).

2) Use a priority queue for keeping 𝐶[𝑣] and getting the 
minimum value at each iteration. The total complexity 
depends on the priority queue implementation:
a) Binary heap: 𝑂 𝑚 log 𝑛

b) Fibonacci heap: 𝑂 𝑚 + 𝑛 log 𝑛



Priority queue: definition

• Priority queue is an abstract data structure which allows to efficiently 
append new items and select an item with the highest priority.

• ‘Priority’ means numeric values attached to items.

• ‘The highest’ means either ‘the maximum’ or ‘the minimum’ value of 
priority. Priority queue must be build as either ‘max’ or ‘min’ priority 
queue; for a max-priority queue one can select an item with the 
maximum priority and cannot select the minimum priority item, and 
vice versa.

• Priority queue is not a queue…

10



Priority queue: definition

Priority queue is an abstract data structure which efficiently 
implements operations:

• Init(n) – initialize an empty priority queue with n possible items.

• Build(S) – build priority queue containing items of S.

• Add(x, prior) – add item x with priority prior to the priority 
queue.

• GetMin() / GetMax() – get the item with the highest priority.

• DelMin() / DelMax() – delete the item with the highest priority.

▪ ChangePriority(x, new_prior) – change the priority of x
to new_prior.

11



Priority queue: definition

For Prim’s algorithm we apply: 

• At the initialization phase:
✓Add(x,prior) – n times

• At the main phase:
✓GetMin() – n times

✓ChangePriority(x,new_priority) – O(m) times.

12



Priority queue: implementation

We will study and analyze several ways to implement a priority 
queue:

• Array-based implementations
✓Linear (unsorted) array
✓Sorted array
✓Dynamic linked sorted list

• Tree-like data structures
✓Binary search tree
✓2-3 tree
✓Binary heap

13



Priority queue: array-based implementation

Unsorted array:
• Add(x, prior) – append to the end of array. 𝑂(1)

• GetMin()– scan the array for the most prioritized item. 𝑂(𝑛)

• DelMin()– locate the most prioritized item and remove it (shift the 
tail of the array to the left). 𝑂(𝑛)

• ChangePriority(x, new_prior) – locate item x in the array 
and change its priority. 𝑂 𝑛

Total complexity: 𝑂 𝑚𝑛

14



Priority queue: array-based implementation

Sorted array:

• Add(x, prior) – insert x to the proper position. 𝑂(𝑛)

• GetMin()– get the first item. 𝑂(1)

• DelMin()– delete the first item, shift other items to the left. 𝑂(𝑛)

• ChangePriority(x, new_prior) – locate item x in the array, 
remove it and insert to the new position. 𝑂 𝑛

Total complexity: 𝑂 𝑚𝑛

15



Priority queue: array-based implementation

Dynamic linked sorted list:

• Add(x, prior) – insert x to the proper position. 𝑂(𝑛)

• GetMin()– get the first item. 𝑂(1)

• DelMin()– delete the first item. 𝑂(1)

• ChangePriority(x, new_prior) – locate item x in the array, 
remove it and insert to the new position. 𝑂 𝑛

Total complexity: 𝑂 𝑚𝑛

16



Priority queue: binary search tree

Binary tree is a graph for which the following conditions hold:

a) It is a tree (=connected acyclic graph).

b) One vertex is marked as the root of the tree.

c) Each vertex has 0-2 children. Vertices with no children are 
called leaves.

d) For each non-leaf vertex, its children are marked as the left
child and the right child. Even if there is only one child, its 
either the left or the right one.

Height of a binary tree is the maximum length of a path from a 
leaf to the root.

17



Priority queue: binary search tree

Binary search tree (BST) is a binary tree for which the following 
conditions hold:

a) Each vertex of BST keeps an item with attached numeric key.

b) BST property holds for each vertex with key K:

• All vertices in the left subtree keep keys which are less than K.

• All vertices in the right subtree keep keys which are greater than 
or equal to K.

18



Priority queue: binary search tree

19



Priority queue: binary search tree

A helper function Find(K):

1. Start from the root (current vertex = root of the BST).

2. If current vertex’s key = K then key is found.

3. Else if current vertex’s key is greater than K then move to the left child 
(current vertex = left child).

4. Else move to the right child (current vertex = right child). 

5. Repeat steps 2-4 until key is found or a leaf is reached.

6. Return ‘true’ and the position of the found vertex or ‘false’ and the 
position where the vertex would be located.

Time complexity: 𝑂(ℎ), where ℎ is the height of the BST.
20



Priority queue: binary search tree

Searching for key=6 (successful) Searching for key=10 (unsuccessful)

http://opendatastructures.org/

21



Priority queue: binary search tree

GetMin(): start from the root and move to the leftmost vertex, i.e. 
stop when the current vertex has no left child. Time complexity: 𝑂 ℎ .

Add(x,key): search for the position at which x would be located in 
the BST, then add a new vertex to this position.

Time complexity: 𝑂 ℎ .

22



Priority queue: binary search tree

DelMin(): delete the leftmost vertex of the BST.

Deleting a vertex 𝑣 from the BST:

• If 𝑣 is a leaf: simply remove the vertex, no additional operations 
needed.

• If 𝑣 has only one child: replace 𝑣 with that child.

23



Priority queue: binary search tree

Deleting a vertex 𝑣 from the BST:

• If 𝑣 has two children:
o Find the leftmost vertex 𝑤 within the right subtree.

o Move vertex 𝑤 to the position of 𝑣.

Time complexity: 𝑂 ℎ .

24



Priority queue: binary search tree

Summary of time complexity for BST: GetMin, DelMin, Add have 
time complexity 𝑂(ℎ), where ℎ is the height of the BST.

Height is 𝑂 log 𝑛 on average but 𝑂 𝑛 in the worst case 

25



Heaps

A heap is a data structure which efficiently implements a 
priority queue with 𝑂(1) time complexity for GetMin() and 
𝑂 log 𝑛 time complexity for DelMin().

Heaps are implemented as tree-based data structures for 
which all vertices store item+key pairs and the following heap 
condition holds: the key of any non-root vertex is not less (not 
greater, for maximizing heaps) than the key of its parent. 
Hence the minimum key item is always stored in the root.

26



Prim’s algorithm

27

Given a connected graph 𝐺 𝑉, 𝐸 , 𝑉 = 𝑛, |𝐸| = 𝑚.

1. 𝑇 𝑉𝑇, 𝐸𝑇 : 𝑉𝑇 = {𝑠}, 𝐸𝑇 = ∅

2. Array C[1..n], P[1..n].
• 𝐶 𝑠 = 0; P[s]=s.
• For each 𝑣 ∈ 𝑉\V𝑇: 𝐶 𝑣 = 𝑤(𝑠, 𝑣); 𝑃 𝑣 = 𝑠

3. While 𝑉𝑇 ≠ 𝑉:
• Find 𝑣 ∈ 𝑉\V𝑇: 𝑣 has minimum 𝐶[𝑣]
• Add 𝑣 to V𝑇; add (𝑃 𝑣 , 𝑣) to 𝐸𝑇
• Update_C&P(v).



Prim’s algorithm

28

Update_C&P(v)
For each 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ 𝑉\V𝑇 and 𝐶 𝑢 > 𝑤(𝑣, 𝑢):

𝐶 𝑢 = 𝑤(𝑣, 𝑢)

𝑃 𝑢 = 𝑣

If we use a heap for storing 𝐶 𝑢 ,

the time complexity is 𝑂(𝑚 ⋅ log 𝑛) .


