Algorithms and Data Structures

Module 2

Lecture 10
'Divide-and-Conquer' strategy. Multiplication.

Multiplication problem

Given two integer numbers x and y, calculate $z=x \cdot y$. Numbers can be represented in either decimal or binary form.

Multiplication: standard algorithm

00000000	$(=$	$23,958,233 \times$	$0)$
71874699	$(=$	$23,958,233 \times$	$30)$
191665864	$(=$	$23,958,233 \times$	$800)$
+119791165	$(=$	$23,958,233 \times 5,000)$	

$$
139676498390(=139,676,498,390
$$

Time complexity: $(O(n)$ multiplications $+O(n)$ additions $) \cdot n=O\left(n^{2}\right)$ for multiplying n-digit numbers.

Multiplication: Divide-and-Conquer

Lets apply 'Divide-and-Conquer' approach to the problem of multiplication.

x	a	b	23958233	$10^{n / 2} a+b$
$\mathrm{y}=$	c	d	00005830	$10^{n / 2} c+$

Thus, $z=x \cdot y=\left(10^{\frac{n}{2}} a+b\right) \cdot\left(10^{\frac{n}{2}} c+d\right)=10^{n} a c+10^{\frac{n}{2}}(a d+$

Multiplication: Divide-and-Conquer

$z=x \cdot y=\left(10^{\frac{n}{2}} a+b\right) \cdot\left(10^{\frac{n}{2}} c+d\right)=10^{n} a c+10^{\frac{n}{2}}(a d+b c)+b d$.
We have 4 multiplications and 3 additions.
We can use a recursive function to compute the product.

```
Function RecursiveProduct(x,y,n):
1. Base case: if n<2 then return x}y
2. Divide the factors into parts: a,b,c,d.
3. Recursively calculate:
\[
\begin{aligned}
& p=\operatorname{RecursiveProduct~}(a, c, n / 2) \\
& q=\operatorname{RecursiveProduct}(a, d, n / 2) \\
& r=\operatorname{RecursiveProduct}(b, c, n / 2) \\
& s=\operatorname{RecursiveProduct}(b, d, n / 2)
\end{aligned}
\]
```

4. Return $10^{n} p+10^{\frac{n}{2}}(q+r)+\mathrm{s}$.

Multiplication: Divide-and-Conquer

$z=x \cdot y=\left(10^{\frac{n}{2}} a+b\right) \cdot\left(10^{\frac{n}{2}} c+d\right)=10^{n} a c+10^{\frac{n}{2}}(a d+b c)+b d$.
Let $T(n)$ denote the time for multiplying two n-digit numbers.
We have 4 multiplications and 3 additions in each recursive call.
Each multiplication takes $T\left(\frac{n}{2}\right)$ time, each addition takes $O(n)$ time.
Thus, $T(n)=4 \cdot T\left(\frac{n}{2}\right)+O(n)$.

Divide-and-Conquer: Master Theorem (simplified version)

The Master Theorem (simplified version): if $T(n)$ satisfies the following recurrence

$$
T(n)= \begin{cases}c, & \text { for } n=1 \\ a \cdot T\left(\frac{n}{b}\right)+d \cdot n, & \text { for } n>1\end{cases}
$$

Then there are 3 cases:

1) If $a<b$, then $T(n)=\Theta(n)$.
2) If $a=b$, then $T(n)=\Theta(n \log n)$.
3) If $a>b$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.

Multiplication: Divide-and-Conquer

$\ln T(n)=4 \cdot T\left(\frac{n}{2}\right)+O(n)$ we have: $a=4, b=2$.
Thus: $T(n)=\Theta\left(n^{\log _{b} a}\right)=\Theta\left(n^{\log _{2} 4}\right)=\Theta\left(n^{2}\right)$.

This version of Divide-and-Conquer algorithm does not reduce the overall time complexity. :

But the Master Theorem gives us the cue: to reduce time complexity, we need to reduce the number of multiplications, even at the expense of increasing the number of additions.

Multiplication: Karatsuba's algorithm

Standard multiplication scheme:
$z=x \cdot y=\left(10^{\frac{n}{2}} a+b\right) \cdot\left(10^{\frac{n}{2}} c+d\right)=10^{n} a c+10^{\frac{n}{2}}(a d+b c)+b d$.
We have 4 multiplications and 3 additions.

Karatsuba's multiplication scheme:

$$
\begin{aligned}
& z=x \cdot y=10^{n} a c+10^{\frac{n}{2}}((a+b)(c+d)-a c-b d)+b d= \\
& 10^{n} a c+10^{\frac{n}{2}}((a+b)(c+d)-a c-b d)+b d .
\end{aligned}
$$

This scheme has 3 multiplications and 6 additions/subtractions.

Multiplication: Karatsuba's algorithm

The time complexity of Karatsuba's algorithm:
$T(n)=3 \cdot T\left(\frac{n}{2}\right)+O(n)$.
Thus: $a=3, b=2=>T(n)=\Theta\left(n^{\log _{b} a}\right)=\Theta\left(n^{\log _{2} 3}\right)=\Theta\left(n^{1.58496}\right)$.

Fast exponentiation

After the problem of multiplication, let us consider the exponentiation problem.
Problem: given integers x and n, calculate $y=x^{n}$.
The naïve algorithm:

$$
\begin{aligned}
& y=x ; \\
& \text { for } \mathrm{i}=2 \text { to } n: \\
& \quad y=y \cdot x ; \\
& \text { return } \mathrm{y} .
\end{aligned}
$$

Time complexity: $O(n)$ multiplications.

Fast exponentiation

Time complexity of the naïve algorithm: $O(n)$ multiplications.
For numeric exponentiation, the complexity of one multiplication operation grows with the size of y. But there are many practical problems for which the complexity of a multiplication operation depends on the size of x only: matrix multiplication, multiplication in modular arithmetic, etc.

Can we calculate powers with less than $O(n)$ multiplications?

Fast exponentiation

Let's consider binary representation of n :

$$
n=\sum_{i=0}^{L-1} n_{i} \cdot 2^{i}
$$

where $L=\left\lceil\log _{2} n\right\rceil, n_{i} \in\{0,1\}$.
Thus,

$$
x^{n}=x^{\sum_{i=0}^{L-1} n_{i} \cdot 2^{i}}=\prod_{i=0}^{L-1} x^{n_{i} \cdot 2^{i}}=\prod_{n_{i}=1} x^{2^{i}}
$$

This expression contains only $L=\log _{2} n$ operations of squaring.

Fast exponentiation

$$
x^{n}=\prod_{n_{i}=1} x^{2^{i}}
$$

The 'exponentiation by squaring' algorithm:

$$
\begin{aligned}
& y=1 ; \\
& s=x ; \\
& \text { for i=0 to } L-1: \\
& \quad \text { if } n_{i}=1 \text { then } y=y \cdot s \text {; } \\
& \quad s=s \cdot s \text {; } \\
& \text { return } y .
\end{aligned}
$$

Time complexity: $O(\log n)$ multiplications.

Fast exponentiation

We can rewrite this algorithm in a recursive form:

```
FastExponentiationRecursive (x,n)
if n=1 than return x;
    else
```

```
s = FastExponentiationRecursive (x, \n/2\rfloor);
```

s = FastExponentiationRecursive (x, \n/2\rfloor);
if n is even than return S}S\mathrm{ ;
if n is even than return S}S\mathrm{ ;
else return s}s\cdots\cdotx

```
        else return s}s\cdots\cdotx
```

Time complexity: $O(\log n)$ multiplications.

Matrix multiplication

Let us consider one more multiplication problem.
Problem: given two $n \times n$ matrices X and Y, calculate their dotproduct $Z=X \cdot Y$.

Direct calculation

$$
z_{i j}=\sum_{k=1}^{n} x_{i k} \cdot y_{k j}
$$

needs $O\left(n^{3}\right)$ time (n^{2} entries, each entry is calculated in $O(n)$ time).

Matrix multiplication

Let us apply the 'Divide-and-Conquer' approach. We represent both tables in block form:
where A, \ldots, H are $\frac{n}{2} \times \frac{n}{2}$ matrices.

$$
X=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right), Y=\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right)
$$

The direct formula leads to the form

$$
\mathbf{X} \cdot \mathbf{Y}=\left(\begin{array}{cc}
\mathbf{A} \cdot \mathbf{E}+\mathbf{B} \cdot \mathbf{G} & \mathbf{A} \cdot \mathbf{F}+\mathbf{B} \cdot \mathbf{H} \\
\mathbf{C} \cdot \mathbf{E}+\mathbf{D} \cdot \mathbf{G} & \mathbf{C} \cdot \mathbf{F}+\mathbf{D} \cdot \mathbf{H}
\end{array}\right)
$$

which also has $O\left(n^{3}\right)$ time complexity, since $T(n)=8 \cdot T\left(\frac{n}{2}\right)+O(n)$.

Matrix multiplication: Strassen algorithm

Strassen algorithm calculates block matrix multiplication using 7 (instead of 8) submatrix multiplications:

$$
\begin{aligned}
& \mathbf{P}_{1}=\mathbf{A} \cdot(\mathbf{F}-\mathbf{H}) \\
& \mathbf{P}_{2}=(\mathbf{A}+\mathbf{B}) \cdot \mathbf{H} \\
& \mathbf{P}_{3}=(\mathbf{C}+\mathbf{D}) \cdot \mathbf{E} \\
& \mathbf{P}_{4}=\mathbf{D} \cdot(\mathbf{G}-\mathbf{E}) \\
& \mathbf{P}_{5}=(\mathbf{A}+\mathbf{D}) \cdot(\mathbf{E}+\mathbf{H}) \\
& \mathbf{P}_{6}=(\mathbf{B}-\mathbf{D}) \cdot(\mathbf{G}+\mathbf{H}) \\
& \mathbf{P}_{7}=(\mathbf{A}-\mathbf{C}) \cdot(\mathbf{E}+\mathbf{F}) .
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{X} \cdot \mathbf{Y} & =\left(\begin{array}{c|c|}
\mathbf{A} \cdot \mathbf{E}+\mathbf{B} \cdot \mathbf{G} & \mathbf{A} \cdot \mathbf{F}+\mathbf{B} \cdot \mathbf{H} \\
\hline \mathbf{C} \cdot \mathbf{E}+\mathbf{D} \cdot \mathbf{G} & \mathbf{C} \cdot \mathbf{F}+\mathbf{D} \cdot \mathbf{H}
\end{array}\right) \\
& =\left(\begin{array}{c|c|}
\mathbf{P}_{5}+\mathbf{P}_{4}-\mathbf{P}_{2}+\mathbf{P}_{6} & \mathbf{P}_{1}+\mathbf{P}_{2} \\
\hline \mathbf{P}_{3}+\mathbf{P}_{4} & \mathbf{P}_{1}+\mathbf{P}_{5}-\mathbf{P}_{3}-\mathbf{P}_{7}
\end{array}\right)
\end{aligned}
$$

Matrix multiplication: Strassen algorithm

The complexity of Strassen algorithm can be expressed as

$$
T(n)=7 \cdot T\left(\frac{n}{2}\right)+O(n)
$$

Thus, $T(n)=O\left(n^{\log _{2} 7}\right)=O\left(n^{2.8074}\right)$.

