Algorithms and Data Structures Module 4. NP-hard problems

Lecture 13

Algorithms for NP-hard problems.

Travelling Salesman Problem.

Let's recall time complexities of algorithms we studied in this course.

Algorithm	Time complexity	Majorant
Binary search	$O(\log n)$	O(n)
Bubble/Insertion/Selection sort	$O(n^2)$	$O(n^2)$
Merge sort	$O(n \log n)$	$O(n^2)$
Graph connectivity components detection	O(m)	$O(n^2)$
Kruskal's (with Union-Find Set data structure)	$O(m\log m) = O(n^2\log n)$	$O(n^3)$
Prim's (with binary heap as priority queue)	$O(m \log n) = O(n^2 \log n)$	$O(n^3)$
Karatsuba's integer multiplication	$\Theta(n^{\log_2 3})$	$O(n^2)$
Strassen's matrix multiplication	$O(n^{\log_2 7})$	$O(n^3)$
Fast exponentiation	$O(\log n)$	O(n)
(to be continued on the next slide		

Algorithm	Time complexity	Majorant
		(continuation)
Dijkstra's algorithm for general case	O(nm)	$O(n^3)$
Floyd-Warshall's	$O(n^3)$	$O(n^3)$
Needleman-Wunsch (Levenshtein's edit distance)	O(nm)	$O(n^2)$
Longest common subsequence	O(nm)	$O(n^2)$

We see that for all the above algorithms there is a constant c such that the algorithm's time complexity is $O(n^c)$.

Such algorithms are called *polynomial time* algorithms.

For the problem of calculating Fibonacci numbers we discussed two algorithms:

- A dynamic programming algorithm with polynomial time complexity O(n).
- A recursive algorithm with time complexity $O(\varphi^n)$ for $\varphi = \frac{1+\sqrt{5}}{2}$.

The recursive algorithm is not polynomial time, it is an exponential time algorithm...

Let's consider two algorithms for a problem with time complexities

O(n) and $O(2^n)$.

n	O(n)	O(2 ⁿ)
50	1.00 sec	1 sec
51	1.02 sec	2 sec
52	1.04 sec	4 sec
60	1.20 sec	17 min
70	1.40 sec	12 days
80	1.60 sec	34 years
90	1.70 sec	~ 35 000 years

That is why polynomial time algorithms are called *efficient*, whereas exponential time algorithms are considered *inefficient*.

For many problems no efficient algorithms are known... 😊

Moreover, for most of these problems it was proved that if a polynomial time algorithm would be designed for one of these problems, this immediately imply polynomial time algorithms for all such problems.

Such problems are called **NP-hard**.

There are thousands of NP-hard problems...

One of the most famous NP-hard problems is the Travelling Salesman Problem (TSP).

Let G(V, E) be a connected graph, $w: E \longrightarrow R_+$ be a weights function.

Definitions

- Cycle Z (path P) is called a *Hamiltonian cycle (Hamiltonian path)* on G iff Z (P) contains each vertex of G exactly once.
- G(V, E) is called a *Hamiltonian* (semi-Hamiltonian) graph iff there is a Hamiltonian cycle (path) on G.
- The weight of Z (or P) is defined as $w(Z) = \sum_{e \in Z} w(e)$.

Hamiltonian graph

Semi-hamiltonian graph

Nonhamiltonian graph

- <u>Decision problem</u>: is the given graph G(V, E) Hamiltonian?
- Search problem: build a Hamiltonian cycle on the given graph G(V,E) (return 'NULL' if G(V,E) is not Hamiltonian).
- Optimization problem (=TSP): build a shortest Hamiltonian cycle on the given graph G(V, E) (return 'NULL' if G(V, E) is not Hamiltonian).

A graph and its optimal Hamiltonian cycle:

http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

Theorem 1: TSP is NP-hard.

Possible options for solving any NP-hard problem (e.g. TSP):

- Exactly but inefficiently:
 - ✓ exhaustive search (brute-force, backtracking)
 - ✓ smart search (branch-and-bound)
- Exactly, efficiently, but not universally:
 - ✓ efficiently solvable special cases.
- Efficiently but inexactly:
 - ✓ approximate algorithms,
 - ✓ heuristics

<u>**Definition**</u>: TSP is called *metric* (MTSP) iff the weight function $w: E \longrightarrow R_+$ is metric.

MTSP is an important special case of TSP.

An important special case of MTSP is Euclidean TSP (ETSP): vertices are points in \mathbb{R}^n and w is Euclidean distance.

Theorem 2: MTSP is also NP-hard.

Theorem 3: Even ETSP is NP-hard.

Brute-force (exhaustive search) approach:

- Exact
- Universal
- Easily adaptable
- Very time-consuming; prohibitive time complexity even for small ($n\sim100$) instances.

Principal idea:

- 1) Generate all feasible solutions.
- 2) For each feasible solutions calculate its cost (weight).
- 3) Select the best (minimum/maximum weight) feasible solution.

For TSP, feasible solutions are Hamiltonian cycles (paths).

Possible representations of a Hamiltonian cycle (path):

- Vertex permutation: list the vertices in the order the cycle/path passes them.
- Edge sequence: list the edges in the order the cycle/path passes them.

Representing a Hamiltonian cycle/path as a vertex permutation is a bit easier, since we just need to check that all neighbors in the permutation are neighbors (adjacent vertices) in the graph (plus, for cycle: the last vertex is adjacent to the first one). For edge sequence representation checking validity is more complicated.

So, we need to generate all n! possible vertex permutations.

In case of *cycle* we need to generate (n-1)!

AFEÉCDGH

FEBCDGHA

EBCDGHAF

...

For an *undirected* graph: only $\frac{(n-1)!}{2}$:

AHGDCBEF

HGDCBEFA

• • •

Generating permutations [Lectures Notes on Algorithm Analysis and Computational Complexity (Fourth Edition) - Ian Parberry: http://ianparberry.com/books/free/license.html].

Problem: given positive integer n, generate all possible permutations of $1, \ldots, n$.

Idea of the generation algorithm:

- Create array A[1..n].
- Initialization: for each i: A[i] = i.
- For each k successively swap A[k] with A[i] for i = 1, ..., k.

```
Call: ProcessPermutations (A, k)
Function ProcessPermutations (A, k)
if k = 1 then Process(A)
else
      ProcessPermutations (A, k-1);
      for i = k-1 downto 1 do
        swap A[k] and A[i];
        ProcessPermutations(A, k-1);
        swap A[k] and A[i];
```

```
unprocessed at
   n=2
   n=3
   n=4
```

What the procedure Process () is for?

- Check whether the current permutation represents a feasible solution (Hamiltonian cycle).
- If it does, yield the current feasible solution (Hamiltonian cycle), calculate its weight and compare to the current champion.

Example:

- Generate 7! permutations, fix A as the 1st vertex.
- Permutation 'aBCDEFGH' is feasible, its weight is 11.
- Permutation 'aBCDEFHG' is not feasible because F and H are not adjacent in the graph.
- Permutation 'aFEBCHGD' is not feasible (doesn't represent a Hamiltonian cycle) because D is not adjacent to A.