Algorithms and Data Structures Module 4. NP-hard problems

Lecture 13
Algorithms for NP-hard problems. Travelling Salesman Problem.

Time complexity

Let's recall time complexities of algorithms we studied in this course.

Algorithm	Time complexity	Majorant
Binary search	$O(\log n)$	$O(n)$
Bubble/Insertion/Selection sort	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$
Merge sort	$O(n \log n)$	$O\left(n^{2}\right)$
Graph connectivity components detection	$O(m)$	$O\left(n^{2}\right)$
Kruskal's (with Union-Find Set data structure)	$O(m \log m)=O\left(n^{2} \log n\right)$	$O\left(n^{3}\right)$
Prim's (with binary heap as priority queue)	$O(m \log n)=O\left(n^{2} \log n\right)$	$O\left(n^{3}\right)$
Karatsuba's integer multiplication	$\Theta\left(n^{\log _{2} 3}\right)$	$O\left(n^{2}\right)$
Strassen's matrix multiplication	$O\left(n^{\log _{2} 7}\right)$	$O\left(n^{3}\right)$
Fast exponentiation	$O(\log n)$	$O(n)$
	(to be continued on the next slide...)	

Time complexity

Algorithm	Time complexity	Majorant
(...continuation)		
Dijkstra's algorithm for general case	$O(\mathrm{~nm})$	$O\left(n^{3}\right)$
Floyd-Warshall's	$O\left(n^{3}\right)$	$O\left(n^{3}\right)$
Needleman-Wunsch (Levenshtein's edit distance)	$O(n m)$	$O\left(n^{2}\right)$
Longest common subsequence	$O(n m)$	$O\left(n^{2}\right)$

We see that for all the above algorithms there is a constant c such that the algorithm's time complexity is $O\left(n^{c}\right)$.
Such algorithms are called polynomial time algorithms.

Time complexity

For the problem of calculating Fibonacci numbers we discussed two algorithms:

- A dynamic programming algorithm with polynomial time complexity $O(n)$.
- A recursive algorithm with time complexity $O\left(\varphi^{n}\right)$ for $\varphi=\frac{1+\sqrt{5}}{2}$.

The recursive algorithm is not polynomial time, it is an exponential time algorithm...

Time complexity

Let's consider two algorithms for a problem with time complexities $O(n)$ and $O\left(2^{n}\right)$.

n	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}\left(2^{\mathrm{n}}\right)$
50	1.00 sec	1 sec
51	1.02 sec	2 sec
52	1.04 sec	4 sec
60	1.20 sec	17 min
70	1.40 sec	12 days
80	1.60 sec	34 years
90	1.70 sec	~ 35000 years

Time complexity

That is why polynomial time algorithms are called efficient, whereas exponential time algorithms are considered inefficient.

For many problems no efficient algorithms are known... $\cdot:$
Moreover, for most of these problems it was proved that if a polynomial time algorithm would be designed for one of these problems, this immediately imply polynomial time algorithms for all such problems.
Such problems are called NP-hard.

Time complexity

There are thousands of NP-hard problems...
One of the most famous NP-hard problems is the Travelling Salesman Problem (TSP).

TSP: definitions

Let $G(V, E)$ be a connected graph, $w: E \rightarrow R_{+}$be a weights function.

Definitions

- Cycle Z (path P) is called a Hamiltonian cycle (Hamiltonian path) on G iff $Z(P)$ contains each vertex of G exactly once.
- $G(V, E)$ is called a Hamiltonian (semi-Hamiltonian) graph iff there is a Hamiltonian cycle (path) on G.
- The weight of Z (or P) is defined as $w(Z)=\sum_{e \in Z} w(e)$.

TSP: definitions

Hamiltonian graph

Semi-hamiltonian graph

Nonhamiltonian graph

TSP: definitions

- Decision problem: is the given graph $G(V, E)$ Hamiltonian?
- Search problem: build a Hamiltonian cycle on the given graph $G(V, E)$ (return 'NULL' if $G(V, E)$ is not Hamiltonian).
- Optimization problem (=TSP): build a shortest Hamiltonian cycle on the given graph $G(V, E)$ (return 'NULL' if $G(V, E)$ is not Hamiltonian).

TSP: definitions

A graph and its optimal Hamiltonian cycle:

http://algorithmics.Isi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

TSP: solving

Theorem 1: TSP is NP-hard.

TSP: solving

Possible options for solving any NP-hard problem (e.g. TSP):

- Exactly but inefficiently:
\checkmark exhaustive search (brute-force, backtracking)
\checkmark smart search (branch-and-bound)
- Exactly, efficiently, but not universally:
\checkmark efficiently solvable special cases.
- Efficiently but inexactly:
\checkmark approximate algorithms,
\checkmark heuristics

TSP: solving

Definition: TSP is called metric (MTSP) iff the weight function $w: E \rightarrow$ R_{+}is metric.
MTSP is an important special case of TSP.
An important special case of MTSP is Euclidean TSP (ETSP): vertices are points in R^{n} and w is Euclidean distance.

TSP: solving

Theorem 2: MTSP is also NP-hard.

Theorem 3: Even ETSP is NP-hard.

TSP: brute force

Brute-force (exhaustive search) approach:

- Exact
- Universal
- Easily adaptable
- Very time-consuming; prohibitive time complexity even for small ($n \sim 100$) instances.

Principal idea:

1) Generate all feasible solutions.
2) For each feasible solutions calculate its cost (weight).
3) Select the best (minimum/maximum weight) feasible solution.

TSP: brute force

For TSP, feasible solutions are Hamiltonian cycles (paths).
Possible representations of a Hamiltonian cycle (path):

- Vertex permutation: list the vertices in the order the cycle/path passes them.
- Edge sequence: list the edges in the order the cycle/path passes them.

Representing a Hamiltonian cycle/path as a vertex permutation is a bit easier, since we just need to check that all neighbors in the permutation are neighbors (adjacent vertices) in the graph (plus, for cycle: the last vertex is adjacent to the first one). For edge sequence representation checking validity is more complicated.

TSP: brute force

So, we need to generate all n ! possible vertex permutations.
In case of cycle we need to generate $(n-1)$! AFEBCDGH
FEBCDGHA EBCDGHAF

For an undirected graph: only $\frac{(n-1)!}{2}$:
AHGDCBEF HGDCBEFA

TSP: brute force

Generating permutations [Lectures Notes on Algorithm Analysis and Computational Complexity (Fourth Edition) - Ian Parberry: http://ianparberry.com/books/free/license.html].
Problem: given positive integer n, generate all possible permutations of $1, \ldots, n$.
Idea of the generation algorithm:

- Create array A [1 . . n] .
- Initialization: for each i: A[i] = i.
- For each k successively $\operatorname{swap} A[k]$ with $A[i]$ for $i=1, \ldots, k$.

TSP: brute force

Call: ProcessPermutations (A, k)

Function ProcessPermutations (A, k)
if k = 1 then Process (A)
else

```
ProcessPermutations(A, k-1);
for i = k-1 downto 1 do
{
        swap A[k] and A[i];
        ProcessPermutations(A, k-1);
        swap A[k] and A[i];
}
```


unprocessed at
$\square \begin{aligned} & n=2 \\ & n=3 \\ & n=4\end{aligned}$
$n=4$

TSP: brute force

What the procedure Process () is for?

- Check whether the current permutation represents a feasible solution (Hamiltonian cycle).
- If it does, yield the current feasible solution (Hamiltonian cycle), calculate its weight and compare to the current champion.

TSP: brute force

Example:

- Generate 7! permutations, fix A as the $1^{\text {st }}$ vertex.
- Permutation 'aBCDEFGH' is feasible, its weight is 11 .
- Permutation 'aBCDEFHG' is not feasible because F and H are not adjacent in the graph.
- Permutation 'aFEBCHGD' is not feasible (doesn't represent a Hamiltonian cycle) because D is not adjacent to A .

