
Algorithms and Data Structures

Module 1

Lecture 4
Graph traversals: depth-first search, 

breadth-first search and their applications. 
Part 2

Adigeev Mikhail Georgievich
mgadigeev@sfedu.ru

adimg@yandex.ru



Graph traversals

2

https://www3.cs.stonybrook.edu/~skiena/combinatorica/animations/search.html



BFS: Breadth-First Search

Visiting a vertex 𝑣, 

visit each of its unvisited neighbors, 

then neighbors of the neighbors, 

etc.

https://en.wikipedia.org/wiki/Breadth-first_search

3



BFS: Breadth-First Search

For keeping this order of visiting,

we need to store neighbor vertices

until we get them for processing.

We need a queue.

https://en.wikipedia.org/wiki/Breadth-first_search

4



Queue: abstract data structure

Queue = abstract data structure with two principal 
operations:

• Enqueue(item)

• Dequeue()

FIFO = First-In, First-Out https://www.javascripttutorial.net/javascript-queue/

5



Queue: abstract data structure

6

Queue = abstract data structure with two principal 
operations:

• Enqueue(item)

• Dequeue()

FIFO = First-In, First-Out https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)



Queue: abstract data structure

7
https://people.cs.vt.edu/~shaffer/Book/



Queue: implementation

A queue data structure can be implemented in different 
ways:

•Array-based

o linear array

o circular array

• Linked-list based

8



Queue: array-based implementation

9

Array-based implementation: keep indices of the front 
and the back(rear) items of the queue.



Queue: array-based implementation

10

https://people.cs.vt.edu/~shaffer/Book/



Queue: circular array-based implementation

11

https://people.cs.vt.edu/~shaffer/Book/



Queue: circular array-based implementation

12

Circular arrays implementation

We use an ordinary linear array (E* or std::vector<E>) and apply 
modular arithmetic when we increment / decrement indices.

Mathematical operation mod: 12 mod 10 = 2; 99 mod 10 = 9.

For an integer x and positive integer m, x mod m is an integer 𝑦 ∈
{0, … ,𝑚 − 1} such that 𝑥 = 𝑦 + 𝑘𝑚 for some integer k.

In C++ we use % operation.



Queue: circular array-based implementation

13

Circular arrays implementation

https://people.cs.vt.edu/~shaffer/Book/



Queue: circular array-based implementation

14

There is a potential problem with this implementation. Lets look at two 
cases:

a) Empty queue => the ‘back’ index is just before the ‘front’ index => 
back = front − 1 .

b) Full queue => back = front + (𝑠𝑖𝑧𝑒 − 1) => back = ൫
൯

front +
𝑠𝑖𝑧𝑒 − 1 % 𝑠𝑖𝑧𝑒 => back = front − 1 .



Queue: circular array-based implementation

15

Two possible solutions:

1) Keep an explicit count of the items in the queue:
• Count = 0 => empty queue

• Count = Size => full queue

2) Use array of size (n+1) for keeping maximum n items:
• Empty queue:

• Full queue:



Queue: circular array-based implementation

16http://opendatastructures.org/ https://people.cs.vt.edu/~shaffer/Book/



Queue: dynamic list-based implementation

17

A dynamic list data structure with ‘front’ and ‘back’ pointers.

itemitemitemitem

B
ac

k

New item

Front



BFS: queue-based implementation

BFS(G)

Select 𝑠 ∈ 𝑉

Enqueue(s)

While (Queue is not empty):

v = Dequeue()

if v is unvisited:

Mark v as ‘visited’

For each u in Adj(v):

Enqueue(u)

18



BFS: applications

1) Detecting connected components.

2) Calculating distances.

Principal idea: visiting a vertex 𝑣, 

visit each of its unvisited neighbors, 

then neighbors of the neighbors, 

etc.

https://en.wikipedia.org/wiki/Breadth-first_search

19



BFS: applications

Graph G=(V,E).

A distance between vertices u and v is the minimum 
length of the path between u and v.

dist(A,E) = 2

20



BFS: applications

Weighted graph G=(V,E), 𝑤:𝐸 → 𝑅

A distance between vertices u and v is the minimum 
weight (=sum of edges’ weights) of the path between u
and v.

dist(A,E) = 18

21



BFS: applications

For unweighted graphs distances from 𝑠 ∈ 𝑉 to all 
other vertices can be calculated using BFS.

For weighted graphs: Dijkstra algorithm works like a BFS 
and calculates distances (from 𝑠 ∈ 𝑉 to all other 
vertices ) on a graph.

22


