Algorithms and Data Structures
Module 1

Lecture 6
Graph traversals: depth-first search,
breadth-first search and their applications.
Part 3

Adigeev Mikhail Georgievich
mgadigeev@sfedu.ru
adimg@yandex.ru

DFS & BFS: applications

 DFS/BFS:
v’ Connected components detection (see lecture 4)
* BFS:

v’ Calculating distances (see lecture 5)
v’ Bipartiteness testing

* DFS:

v’ Detecting cycles
v’ Topological ordering (topological sort) of a DAG

BFS: Calculating distances

Graph G=(V,E).

A distance between vertices u and v is the minimum
length of the path between u and v.

dist(AE) = 2 O

BFS: Calculating distances

Problem: for given G(V, E) and a vertex s € V find distances and the
shortest paths from s to every other vertex.

DistancesBFS (G)
// Initialization
Create d[],p!]
For each v € V\{s}:

dlu] = +oo;
plul]= null;

dls] = 0;
(

Enqueue (s)

BFS: Calculating distances

// Breadth-First Search
While (Queue 1s not empty):
v = Dequeue ()
1f v 1s unvisited:
Mark v as ‘visited’
For each u in Adj (v):
if d[u] > d[v]+1:
dlu] = dlv]+1
plul] = v
Enqueue (u)

BFS: Calculating distances

How do we construct a path from s to v?

We start from v and reconstruct the path
backward to s: we move from a current vertex u
to x = plu], thentoy = p|x],..., until we
get s.

BFS: Bipartiteness check

Graph G(V, E) is called bipartite iff its vertex set V can be partitioned
into two disjoint subsets (parts): V = B U R such that for each edge
e € E the endpoints of e belong to different subsets.

B I:- T8 e g
1% - E
1% - Py
e T ™ - -
L e s -

BFS: Bipartiteness check

Theorem. Graph G (V, E) is bipartite iff it has no cycles of odd length.

Corollary: trees and forests are bipartite graphs.

B R

77?7

BFS: Bipartiteness check

Algorithm for bipartiteness check.
Let G(V, E) be a connected graph.

1. R=B=¢

2. Select any s€V. d[s]=0.

3. Calculate d[v] - distances from s to all other vertices.
4. For each veV:

if d[v] is odd: R=RU{v}
else: B=BU{v}

5. Scan thru E and check whether the condition holds.

Time complexity: O(|V| + |E|)

BFS: Bipartiteness check

DFS: Detecting cycles

DAG = directed acyclic graph = directed graph with no directed

cycles.
o ®\ /®
A
(2D C

< 1

DFS: Detecting cycles

DEFS (v)

Mark v as ‘visited’
Mark v as ‘active’
For each u in Adj (v):
1f u 1s unvisited:
DF'S (u)
else 1f u i1s ‘active’:
a cycle found!!!

Mark v as ‘inactive’

12

DFS: Topological sort of a DAG

Topological ordering (sort) is vertex numbering 7: V & {1, ..., [V]}:
there are no edges (u,v) in G: T(u) > 7(v).

= J5 l"'@

13

Graphs: definition (lecture 03)

vevV:

v deg(v) - degree of vertex v = number of edges incident to v .
v outdeg(v)- out-degree of vertex v = number of edges which start from v .
v indeg(v)- in-degree of vertex v = number of edges which end at v .

v’ v is a source iff indeg(v) =0
v' v is a sink iff outdeg(v) = 0 (K /C?

14

DFS: Topological sort of a DAG

Assign a vertex ‘topological number’ just before leaving this
vertex: initialize CurTopNum with n = |V|, then run DFS:

DFS (v)

PostVisit (v)
TopNum|[v] = CurTopNum
CurTopNum—-

DAl o1+ ((+7)
T r Vv oLt \Vv)

Mark v as ‘visited’

For each u 1n Adj (v):
1f u 1s unvisited: DFS (u)
PostVisit (v)

15

DFS: Topological sort of a DAG

16

