
Algorithms and Data Structures

Module 2

Lecture 10
Binary heap implementation and

application.

Heaps

A heap is a data structure which efficiently implements a
priority queue with 𝑂(1) time complexity for GetMin() and
𝑂 log 𝑛 time complexity for DelMin().

Heaps are implemented as tree-based data structures for
which all vertices store item+key pairs and the following heap
condition holds: the key of any non-root vertex is not less (not
greater, for maximizing heaps) than the key of its parent.
Hence the minimum key item is always stored in the root.

2

Heaps

3

Binary heap

A binary heap is implemented as a complete binary tree
represented as a linear array.

A binary tree is called complete iff every level of this tree,
except possibly the last, is completely filled. If the last level is
incomplete, the vertices at the last level are situated as far
left as it is possible.

4

Binary heap

5

Binary heap

Representing a complete binary tree with a linear array
H[0..n-1].

• The root is at H[0].

• For any 𝑖 < 𝑛/2, the children of 𝐻 𝑖 are at 𝐻 2𝑖 + 1 (the
left child) and 𝐻 2𝑖 + 2 (the right child).

6

Binary heap

7

Binary heap: operations

GetMin(): return 𝐻 0 . Time complexity: 𝑂(1).

Add(x, key):

1. Add the new item to the end of H[].

2. Run SiftUp operation to make the heap condition hold:
if key of the current vertex 𝐻[𝑛 − 1] is less than the key of

its parent 𝐻[𝑖] 𝑖 =
𝑛

2
then

1) Swap 𝐻[𝑛 − 1] with its parent 𝐻[𝑖].

2) SiftUp the vertex 𝐻 𝑖 .

8

Binary heap: Add (+SiftUp)

9

Binary heap: operations

DelMin(): delete the root item from the heap:

1. Move the item from the last vertex to the root.

2. Starting at the root, recursively run SiftDown operation
to make the heap condition hold.
• Check if key of the current vertex 𝐻[𝑘] is less than the key of

both children. If this holds, stop. Otherwise:
1) Swap 𝐻[𝑘] with its child 𝐻[𝑖] with the least key.

2) SiftDown the vertex 𝐻 𝑖 .

10

Binary heap: DelMin (+SiftDown)

11

Binary heap: ChangeKey

For efficient implementation of Prim’s algorithm, we need one more
helper operation: ChangePriority(x,new_prior).

In general, this can be done as a sequence of deleting an item and adding
it back with the new key (priority). But for heaps, there is a more efficient
implementation:

1. Lookup for x in the heap. This does not need traversing the tree, we
just keep direct pointers from items to the vertices of the heap.

2. Change its key to new_prior.

3. If new_prior is less then the previous key, then run SiftUp starting
from the current vertex. Otherwise, run SiftDown starting from the
current vertex.

12

Binary heap: building

For a binary heap, as well as for a priority queue, there may be
two versions of initialization procedure:

• Init(n) – initialize an empty priority queue with n possible
items.

• Build(S) – build priority queue containing items of S.

To build a heap which contains a given set S (𝑆 = 𝑛), we can
start from an empty heap and add n items one after another. For a
binary heap, it takes 𝑂 𝑛 log 𝑛 time. But there is a more efficient
way…

13

Binary heap: building

Given an array H[0..n-1], which contains the items in arbitrary
order, we move from the last level to the root, and for each vertex
run SiftDown procedure.

BuildBinaryHeap(H[0..n-1]):

for (i =(n-1)/2; i>=0; i--)

{

SiftDown(H, i, n)

}

This procedure has time complexity 𝑂(𝑛).

14

Binary heap: applications

Sorting an array.

Given: an array 𝐴[0. . 𝑛 − 1].

Task: sort A in ascending order.

HeapSort:

1.Build MaxBinaryHeap(A).

2.For i= n-1 downto 0:

• Swap A[0] with A[i]

• SiftDown(A, 0, i-1)

15

𝑂(𝑛)
𝑂(𝑛 log 𝑛)

Binary heap: applications

Sorting an array.

https://en.wikipedia.org/wiki/Heapsort

A nice animation on YouTube: https://www.youtube.com/watch?v=MtQL_ll5KhQ

16

https://www.youtube.com/watch?v=MtQL_ll5KhQ

Binary heap: applications

Order statistics.

Given: an array 𝐴[0. . 𝑛 − 1] and an integer k.

Task: get k smallest items (or: the kth smallest item).

1.Build MinBinaryHeap(A).

2.For i=1 to k:

• yield GetMin(); DelMin();

The specialized order statistics algorithm needs 𝑂(𝑛) time.

17

𝑂(𝑛)
𝑂(𝑘 log 𝑛)

𝑂(𝑛 + 𝑘 log 𝑛)

Binary heap: applications

Prim’s algorithm.

To implement Prim’s algorithm efficiently, we need a priority
queue for storing minimum distances from non-tree vertices
to the current tree. At each iteration, we get the closest non-
tree vertex and add it to the tree; and then we update the
distances

18

Prim’s algorithm

19

Given a connected graph 𝐺 𝑉, 𝐸 , 𝑉 = 𝑛, |𝐸| = 𝑚.

1. 𝑇 𝑉𝑇, 𝐸𝑇 : 𝑉𝑇 = {𝑠}, 𝐸𝑇 = ∅

2. Array C[1..n], P[1..n].
• 𝐶 𝑠 = 0; P[s]=s.
• For each 𝑣 ∈ 𝑉\V𝑇: 𝐶 𝑣 = 𝑤(𝑠, 𝑣); 𝑃 𝑣 = 𝑠

3. While 𝑉𝑇 ≠ 𝑉:
• Find 𝑣 ∈ 𝑉\V𝑇: 𝑣 has minimum 𝐶[𝑣]
• Add 𝑣 to V𝑇; add (𝑃 𝑣 , 𝑣) to 𝐸𝑇
• Update_C&P(v).

Prim’s algorithm

20

Update_C&P(v)
For each 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ 𝑉\V𝑇 and 𝐶 𝑢 > 𝑤(𝑣, 𝑢):
𝐶 𝑢 = 𝑤(𝑣, 𝑢)
𝑃 𝑢 = 𝑣

If we use a heap for storing 𝐶 𝑢 ,
we need quick implementations for:
• Accessing a heap vertex for the corresponding graph vertex.
• Updating keys in the heap.

ChangePriority

Binary heap: ChangeKey (reminder)

For efficient implementation of Prim’s algorithm, we need one more
helper operation: ChangePriority(x,new_prior).

In general, this can be done as a sequence of deleting an item and adding
it back with the new key (priority). But for heaps, there is a more efficient
implementation:

1. Lookup for x in the heap. This does not need traversing the tree, we
just keep direct ‘pointers’ from items to the vertices of the heap.

2. Change its key to new_prior.

3. If new_prior is less then the previous key, then run SiftUp starting
from the current vertex. Otherwise, run SiftDown starting from the
current vertex.

21

Prim’s algorithm

22

We need quick implementations for:
• Accessing a heap vertex for the corresponding graph vertex.
• Updating keys in the heap.

We use a helper array Position[] which for each graph vertex
keeps a ‘pointer’ to the corresponding heap vertex. For array-based
implementation of a binary heap, a ‘pointer’ is just the index within
the array H[].
1. When we swap two heap vertices, we also update values in

Position[].
2. We use Position[] to update distances for vertices not in the

tree (within ChangePriority function).

