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Lecture 10
Binary heap implementation and 

application.



Heaps

A heap is a data structure which efficiently implements a 
priority queue with 𝑂(1) time complexity for GetMin() and 
𝑂 log 𝑛 time complexity for DelMin().

Heaps are implemented as tree-based data structures for 
which all vertices store item+key pairs and the following heap 
condition holds: the key of any non-root vertex is not less (not 
greater, for maximizing heaps) than the key of its parent. 
Hence the minimum key item is always stored in the root.
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Heaps
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Binary heap

A binary heap is implemented as a complete binary tree 
represented as a linear array.

A binary tree is called complete iff every level of this tree, 
except possibly the last, is completely filled. If the last level is 
incomplete, the vertices at the last level are situated as far 
left as it is possible.
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Binary heap
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Binary heap

Representing a complete binary tree with a linear array 
H[0..n-1].

• The root is at H[0].

• For any 𝑖 < 𝑛/2, the children of 𝐻 𝑖 are at 𝐻 2𝑖 + 1 (the 
left child) and 𝐻 2𝑖 + 2 (the right child).
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Binary heap
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Binary heap: operations

GetMin(): return 𝐻 0 . Time complexity: 𝑂(1).

Add(x, key):

1. Add the new item to the end of H[].

2. Run SiftUp operation to make the heap condition hold: 
if key of the current vertex 𝐻[𝑛 − 1] is less than the key of 

its parent 𝐻[𝑖] 𝑖 =
𝑛

2
then

1) Swap 𝐻[𝑛 − 1] with its parent 𝐻[𝑖].

2) SiftUp the vertex 𝐻 𝑖 .
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Binary heap: Add (+SiftUp)
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Binary heap: operations

DelMin(): delete the root item from the heap:

1. Move the item from the last vertex to the root.

2. Starting at the root, recursively run SiftDown operation 
to make the heap condition hold.
• Check if key of the current vertex 𝐻[𝑘] is less than the key of 

both children. If this holds, stop. Otherwise:
1) Swap 𝐻[𝑘] with its child 𝐻[𝑖] with the least key.

2) SiftDown the vertex 𝐻 𝑖 .
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Binary heap: DelMin (+SiftDown)
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Binary heap: ChangeKey

For efficient implementation of Prim’s algorithm, we need one more 
helper operation: ChangePriority(x,new_prior).

In general, this can be done as a sequence of deleting an item and adding 
it back with the new key (priority). But for heaps, there is a more efficient 
implementation: 

1. Lookup for  x in the heap. This does not need traversing the tree, we 
just keep direct pointers from items to the vertices of the heap.

2. Change its key to new_prior.

3. If new_prior is less then the previous key, then run SiftUp starting 
from the current vertex. Otherwise, run SiftDown starting from the 
current vertex.
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Binary heap: building

For a binary heap, as well as for a priority queue, there may be 
two versions of initialization procedure:

• Init(n) – initialize an empty priority queue with n possible 
items.

• Build(S) – build priority queue containing items of S.

To build a heap which contains a given set S ( 𝑆 = 𝑛), we can 
start from an empty heap and add n items one after another. For a 
binary heap, it takes 𝑂 𝑛 log 𝑛 time. But there is a more efficient 
way…
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Binary heap: building

Given an array H[0..n-1], which contains the items in arbitrary 
order, we move from the last level to the root, and for each vertex 
run SiftDown procedure.

BuildBinaryHeap(H[0..n-1]):

for (i =(n-1)/2; i>=0; i--)

{

SiftDown(H, i, n)

}

This procedure has time complexity 𝑂(𝑛).
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Binary heap: applications

Sorting an array.

Given: an array 𝐴[0. . 𝑛 − 1]. 

Task: sort A in ascending order.

HeapSort:

1.Build MaxBinaryHeap(A).

2.For i= n-1 downto 0:

• Swap A[0] with A[i]

• SiftDown(A, 0, i-1)
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Binary heap: applications

Sorting an array.

https://en.wikipedia.org/wiki/Heapsort

A nice animation on YouTube: https://www.youtube.com/watch?v=MtQL_ll5KhQ
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Binary heap: applications

Order statistics.

Given: an array 𝐴[0. . 𝑛 − 1] and an integer k. 

Task: get k smallest items (or: the kth smallest item).

1.Build MinBinaryHeap(A).

2.For i=1 to k:

• yield GetMin(); DelMin();

The specialized order statistics algorithm needs 𝑂(𝑛) time.
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Binary heap: applications

Prim’s algorithm.

To implement Prim’s algorithm efficiently, we need a priority 
queue for storing minimum distances from non-tree vertices 
to the current tree. At each iteration, we get the closest non-
tree vertex and add it to the tree; and then we update the 
distances 
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Prim’s algorithm
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Given a connected graph 𝐺 𝑉, 𝐸 , 𝑉 = 𝑛, |𝐸| = 𝑚.

1. 𝑇 𝑉𝑇, 𝐸𝑇 : 𝑉𝑇 = {𝑠}, 𝐸𝑇 = ∅

2. Array C[1..n], P[1..n].
• 𝐶 𝑠 = 0; P[s]=s.
• For each 𝑣 ∈ 𝑉\V𝑇: 𝐶 𝑣 = 𝑤(𝑠, 𝑣); 𝑃 𝑣 = 𝑠

3. While 𝑉𝑇 ≠ 𝑉:
• Find 𝑣 ∈ 𝑉\V𝑇: 𝑣 has minimum 𝐶[𝑣]
• Add 𝑣 to V𝑇; add (𝑃 𝑣 , 𝑣) to 𝐸𝑇
• Update_C&P(v).



Prim’s algorithm
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Update_C&P(v)
For each 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ 𝑉\V𝑇 and 𝐶 𝑢 > 𝑤(𝑣, 𝑢):
𝐶 𝑢 = 𝑤(𝑣, 𝑢)
𝑃 𝑢 = 𝑣

If we use a heap for storing 𝐶 𝑢 ,
we need quick implementations for:
• Accessing a heap vertex for the corresponding graph vertex.
• Updating keys in the heap.

ChangePriority



Binary heap: ChangeKey (reminder)

For efficient implementation of Prim’s algorithm, we need one more 
helper operation: ChangePriority(x,new_prior).

In general, this can be done as a sequence of deleting an item and adding 
it back with the new key (priority). But for heaps, there is a more efficient 
implementation: 

1. Lookup for  x in the heap. This does not need traversing the tree, we 
just keep direct ‘pointers’ from items to the vertices of the heap.

2. Change its key to new_prior.

3. If new_prior is less then the previous key, then run SiftUp starting 
from the current vertex. Otherwise, run SiftDown starting from the 
current vertex.
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Prim’s algorithm

22

We need quick implementations for:
• Accessing a heap vertex for the corresponding graph vertex.
• Updating keys in the heap.

We use a helper array Position[] which for each graph vertex 
keeps a ‘pointer’ to the corresponding heap vertex. For array-based 
implementation of a binary heap, a ‘pointer’ is just the index within 
the array H[].
1. When we swap two heap vertices, we also update values in 

Position[].
2. We use Position[] to update distances for vertices not in the 

tree (within ChangePriority function).


