! File FE_Mod_CP_3_ha.inp ! Test problem No. 3 ! PLANE PROBLEM ! OSCILLATIONS OF A COMPOUND RING (CYLINDER) IN ACOUSTIC MEDIUM ! ! Calculation of natural frequencies of the body with fluid ! Infinite elements FLUID129 ! Invert background from black to white /RGB,INDEX,100,100,100,0 /RGB,INDEX,0,0,0,15 /PREP7 F_R='FE_Mod_CP_3_ha_4_SM1' ! file name for output results ! Parameters for geometrical sizes (all in SI system) R1=0.25 ! inner radius of the ring R2=0.26 ! middle radius of the ring R3=0.27 ! outer radius of the ring KRA=4 ! coefficient for the computation of the radius RA RA=KRA*R3 ! radius for external boundary of the fluid FP=100 ! Force value NFREQ=100 ! number of output frequencies FBEG=100 ! start value for the frequency range FEND=150 ! end value for the frequency range ! Material properties ! Material constants of steel RO1=7.86e3 ! density E1=2e11 ! Young's modulus NU1=0.29 ! Poisson's ratio ! Material constants of copper RO2=8.9e3 E2=1.2e11 NU2=0.33 ! Material constants of fluid ROA=1030 CA=1560 AD=1 MP,DENS,1,RO1 ! density of medium 1 MP,EX,1,E1 ! Young's modulus of medium 1 MP,NUXY,1,NU1 ! Poisson's ratio of medium 1 MP,DENS,2,RO2 ! density of medium 2 MP,EX,2,E2 ! Young's modulus of medium 2 MP,NUXY,2,NU2 ! Poisson's ratio of medium 2 MP,DENS,3,ROA ! density of acoustic medium MP,SONC,3,CA ! speed of sound in acoustic medium MP,MU,3,AD ! absorbing coefficient at the impedance boundary ET,1,PLANE42,,,2 ! Elastic finite element with 4 nodes, plane strain ET,2,FLUID29,,1 ! Acoustic finite element with 4 nodes, without UX & UY ET,3,FLUID29 ! Acoustic finite element with 4 nodes, with UX & UY ET,4,FLUID129 ! Acoustic finite element for infinite boundaries R,4,RA ! Radius of infinite boundary for finite element FLUID129 ! Parameters of finite element mesh SM=1.00 ! scaling multiplier HDIV=2*SM ! Number of FEs along the thickness (for one material) TDIV=32*SM ! Number of FEs along the circumferential direction HADIV=32*SM ! Number of FEs along the radial direction for acoustic medium SPACE=3 ! Multiplier to increase the length of acoustic FE ! along the radial direction /OUTPUT,F_R,res *VWRITE (1X,' HARMONIC ANALYSIS (Plane42, Fluid29)') *VWRITE,KRA (1X,' RA/R3= ',F4.0) *VWRITE,NFREQ (1X,' NFREQ= ',F4.0) *VWRITE,HDIV,TDIV,HADIV (1X,' HDIV= ',F4.0,' TDIV= ',F4.0,' HADIV= ',F4.0) /OUTPUT ! Geometry of the model CSYS,1 ! Change active coordinate system to cylindrical K,1,R1 $ K,2,R2 $ K,3,R3 K,4,R3,90 $ K,5,R2,90 $ K,6,R1,90 L,6,1 $ L,1,2 $ L,2,5 $ L,5,6 $ L,2,3 $ L,3,4 $ L,4,5 A,1,2,5,6 $ A,2,3,4,5 K,7,RA $ K,8,RA,90 L,3,7 $ L,7,8 $ L,8,4 A,3,7,8,4 CSYS,0 ! Change active coordinate system to Cartesian ! Line division LESIZE,1,,,TDIV $ LESIZE,3,,,TDIV $ LESIZE,6,,,TDIV LESIZE,2,,,HDIV $ LESIZE,5,,,HDIV LESIZE,4,,,HDIV $ LESIZE,7,,,HDIV LESIZE,9,,,TDIV LESIZE,8,,,HADIV,SPACE LESIZE,10,,,HADIV,1/SPACE MSHKEY,1 MSHAPE,0,2D ASEL,S,AREA,,2 ! Select new set of areas - area 2 AATT,2,,1 ! Associate material 2 and element type 1 (MAT=2, TYPE=1) ! with the selected area ASEL,S,AREA,,3 ! Select new set of areas - area 3 AATT,3,,2 ! Associate material 3 and element type 2 (MAT=3, TYPE=2) ! with the selected area ASEL,ALL ! Select all areas AMESH,ALL ! Mesh all areas ! Change acoustic finite elements on the border of the ring to type 3 LSEL,S,LINE,,6 ! Select line 6 - border of the ring and acoustic medium NSLL,S,1 ! Select nodes on the selected lines ESLN,S,0 ! Select finite elements that are attached to the selected nodes ESEL,U,TYPE,,1 ! Unselect elements of type 1 from the selected set EMODIF,ALL,TYPE,3 ! Modify all selected elements to type 3 ALLSEL ! Fluid-Structure Interface (FSI) CSYS,1 NSEL,S,LOC,X,R3 ! Select the nodes at the border of solid and fluid bodies ESLN ! Select elements attached to the selected nodes ESEL,R,TYPE,,3 ! Select finite elements that have TYPE=3 SF,ALL,FSI ! Set the flag FSI for the contact nodes NSEL,ALL ESEL,ALL CSYS,0 FINISH /SOLU ANTYPE,HARMIC ! Steady-state oscillations HROPT,FULL HARFRQ,FBEG,FEND NSUBST,NFREQ KBC,1 ! Symmetry conditions LSEL,S,LOC,Y,0 LSEL,A,LOC,X,0 DL,ALL,,SYMM LSEL,ALL CSYS,1 KSEL,S,LOC,X,R1 KSEL,R,LOC,Y,0 FK,ALL,FX,-FP/2 ! Divide FP into 2, as we consider half of the model KSEL,ALL CSYS,0 ! Define infinite elements FLUID129 CSYS,1 NSEL,S,LOC,X,RA ! Select nodes at the impedance boundary TYPE,4 $ REAL,4 $ MAT,3 ESURF ESEL,ALL NSEL,ALL CSYS,0 OUTRES,BASIC,ALL SOLVE SAVE FINISH /POST26 /SHOW,WIN32C /TRIAD,OFF ! Do not show the global coordinate triad /PLOPTS,INFO,2 ! Use auto-legend /PLOPTS,LEG2,OFF /PLOPTS,LOGO,OFF ! Do not show ANSYS logo /PLOPTS,DATE,OFF ! Do not show date /PLOPTS,FRAME,OFF ! Do not show frame /COLOR,CURVE,WHIT,1,6 /COLOR,GRID,WHIT /GRID,1 CSYS,1 NSEL,S,LOC,X,R3 NSEL,R,LOC,Y,90 ! Node with number N_RES1 is the point (0,R3) in Cartesian CS *GET,N_RES1,NODE,,NUM,MIN NSEL,S,LOC,X,RA NSEL,R,LOC,Y,90 ! Node with number N_RES2 is the point (0,RA) in Cartesian CS *GET,N_RES2,NODE,,NUM,MIN NSEL,ALL CSYS,0 /XRANG,FBEG,FEND /AXLAB,X,Frequency (Hz) /AXLAB,Y,Displacement UY (m) NSOL,2,N_RES1,UY ABS,3,2,,ABSUY *GET,FRES,VARI,3,EXTREM,TMAX ! Define resonance frequency /OUTPUT,F_R,res,,append *VWRITE,FRES (1X,' FRES= ',E12.5) PRVAR,2 /OUTPUT PLCPLX,2 ! Real part PLVAR,2 ! PLVAR,3 ! Amplitude UY ! Commands to plot the pressure at the same point ! NSOL,4,N_RES1,PRES ! /AXLAB,Y,Acoustic pressure PRES (Pa) ! PLVAR,4