
Algorithms and Data Structures

Module 1

Lecture 2
Sorting algorithms, part 1.

List data structures.

Adigeev Mikhail Georgievich
mgadigeev@sfedu.ru

adimg@yandex.ru

Bubble sort

• Scan the array n times.

•During each scan: compare neighbor items and swap
them if they are ordered incorrectly.

2

Bubble sort

https://people.cs.vt.edu/~shaffer/Book/

3

Bubble sort

• Time complexity (=number of comparisons):

𝑖=1

𝑛

𝑖 =
𝑛(𝑛 − 1)

2
= 𝑂(𝑛2)

• Space complexity: 𝑂 𝑛 , an in-place sorting.

4

Insertion sort

• For each A[i]: insert A[i] to the proper position within
A[1..i-1].

5

Insertion sort

For each A[i]: insert A[i] to the proper position within
A[1..i-1].

Operations:

• Search for the proper position (j) in the sorted part of array.

• Insert A[i] to the position.

6

Insertion sort

• Search for the proper position (j) in the sorted part of array.
=> ‘Dichotomy’ / ‘binary search’.

Searching in array of length n requires log2 𝑛 comparisons.

7

Insertion sort

• Insert A[i] to the position.

=> shift A[j..i-1] to the right: 𝑂(𝑖) assignments.

𝑖=1

𝑛

𝑖 =
𝑛(𝑛 − 1)

2
= 𝑂(𝑛2)

8

https://people.cs.vt.edu/~shaffer/Book/

Insertion sort

Total time complexity:
• Search for the proper position (j) in the sorted part of array:
𝑂 𝑛 log 𝑛 comparisons.

• Insert A[i] to the position: 𝑂(𝑛2) assignments.

Total time complexity: 𝑂(𝑛2).

Space complexity: 𝑂 𝑛 , an in-place sorting.

.

9

Insertion sort

Total time complexity:
• Search for the proper position (j) in the sorted part of array:
𝑂 𝑛 log 𝑛 comparisons.

• Insert A[i] to the position: 𝑂(𝑛2) assignments.

Total time complexity: 𝑂(𝑛2).

Space complexity: 𝑂 𝑛 , an in-place sorting.

Can we reduce the number of operations?

10

Insertion sort

Total time complexity: 𝑂(𝑛2).

Can we reduce the number of operations?

a) Use other algorithm.

b) Use other data structures.

11

Insertion sort

If assingment is more costly operation than
comparison, we can reduce the overall time by
performing more comparisons and less assignments.

12

Data structures

Data structure is a data organization, management,
and storage format that enables efficient data
processing (access and modification).

Examples:

13

• Array
✓ sorted
✓ unsorted

• List
• Stack
• Queue

• Tree
• …

Data structures

Abstract data structure defines an interface, i.e. a set
of operations one can perform on data.

Data structure implementation defines the internal
representation of the data + algorithmic
implementations of operations.

14

Data structures: List

List : abstract data structure:

Operations:

15

• size()
• append()

• get(i)
• set(i, x)
• find(x)

• add(i, x)
• remove(i)

Data structures: List

16

List implementations:
• (static) array-based
✓ unsorted array
✓ sorted array

• (dynamic) linked list

Data structures: List

17

Static array-based implementations:

Data structures: List

18

Dynamic linked list-based implementations:

Data structures: List

19

Dynamic linked list-based implementations:
insert(i, 10) remove(i)

Data structures: List

20

Operations’ complexities:

Unsorted array Sorted array Linked list

get(i) / set(i, x) 𝑂(1) 𝑂(1) 𝑂(𝑛)

append(x) 𝑂(1) 𝑂(𝑛) 𝑂(1)

add(i, x) / remove(i) 𝑂(𝑛) 𝑂(𝑛) 𝑂(1)

find(x) 𝑂(𝑛) 𝑂(log 𝑛) 𝑂(𝑛)

