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Bubble sort

• Scan the array n times.

•During each scan: compare neighbor items and swap 
them if they are ordered incorrectly.
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Bubble sort

https://people.cs.vt.edu/~shaffer/Book/
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Bubble sort

• Time complexity (=number of comparisons):



𝑖=1

𝑛

𝑖 =
𝑛(𝑛 − 1)

2
= 𝑂(𝑛2)

• Space complexity: 𝑂 𝑛 , an in-place sorting.
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Insertion sort

• For each A[i]: insert A[i] to the proper position within 
A[1..i-1].
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Insertion sort

For each A[i]: insert A[i] to the proper position within 
A[1..i-1].

Operations:

• Search for the proper position (j) in the sorted part of array.

• Insert A[i] to the position.
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Insertion sort

• Search for the proper position (j) in the sorted part of array.
=> ‘Dichotomy’ / ‘binary search’.

Searching in array of length n requires log2 𝑛 comparisons.
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Insertion sort

• Insert A[i] to the position.

=> shift A[j..i-1]  to the right: 𝑂(𝑖) assignments.
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https://people.cs.vt.edu/~shaffer/Book/



Insertion sort

Total time complexity:
• Search for the proper position (j) in the sorted part of array: 
𝑂 𝑛 log 𝑛 comparisons.

• Insert A[i] to the position: 𝑂(𝑛2) assignments.

Total time complexity: 𝑂(𝑛2).

Space complexity: 𝑂 𝑛 , an in-place sorting.

.
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Insertion sort

Total time complexity:
• Search for the proper position (j) in the sorted part of array: 
𝑂 𝑛 log 𝑛 comparisons.

• Insert A[i] to the position: 𝑂(𝑛2) assignments.

Total time complexity: 𝑂(𝑛2).

Space complexity: 𝑂 𝑛 , an in-place sorting.

Can we reduce the number of operations?
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Insertion sort

Total time complexity: 𝑂(𝑛2).

Can we reduce the number of operations?

a) Use other algorithm.

b) Use other data structures.
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Insertion sort

If assingment is more costly operation than 
comparison, we can reduce the overall time by 
performing more comparisons and less assignments.
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Data structures

Data structure is a data organization, management, 
and storage format that enables efficient data 
processing (access and modification).

Examples:
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• Array
✓ sorted
✓ unsorted

• List
• Stack
• Queue

• Tree
• …



Data structures

Abstract data structure defines an interface, i.e. a set 
of operations one can perform on data.

Data structure implementation defines the internal 
representation of the data + algorithmic 
implementations of operations.
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Data structures: List

List : abstract data structure:

Operations:
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• size()
• append()

• get(i)
• set(i, x)
• find(x)

• add(i, x)
• remove(i)



Data structures: List
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List implementations:
• (static) array-based
✓ unsorted array
✓ sorted array

• (dynamic) linked list



Data structures: List
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Static array-based implementations:



Data structures: List
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Dynamic linked list-based implementations:



Data structures: List
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Dynamic linked list-based implementations:
insert(i, 10) remove(i)



Data structures: List
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Operations’ complexities:

Unsorted array Sorted array Linked list

get(i) / set(i, x) 𝑂(1) 𝑂(1) 𝑂(𝑛)

append(x) 𝑂(1) 𝑂(𝑛) 𝑂(1)

add(i, x) / remove(i) 𝑂(𝑛) 𝑂(𝑛) 𝑂(1)

find(x) 𝑂(𝑛) 𝑂(log 𝑛) 𝑂(𝑛)


