
Algorithms and Data Structures
Module 3. Dynamic programming

Lecture 14
Dynamic programming for calculating

distances in graphs. Part 1.

BFS: applications (lecture 5)

Graph G=(V,E).

A distance between vertices u and v is the minimum
length of the path between u and v.

dist(A,E) = 2

2

BFS: applications (lecture 5)

Weighted graph G=(V,E), 𝑤:𝐸 → 𝑅

A distance between vertices u and v is the minimum
weight (=sum of edges’ weights) of the path between u
and v.

dist(A,E) = 18

3

BFS: applications (lecture 5)

For unweighted graphs distances from 𝑠 ∈ 𝑉 to all
other vertices can be calculated using BFS.

For weighted graphs: Dijkstra algorithm works like a BFS
and calculates distances (from 𝑠 ∈ 𝑉 to each of other
vertices) on a graph.

4

Problem definition

5

Given: a weighted graph 𝐺 𝑉, 𝐸 , edge weights 𝑤:𝐸 → 𝑅.

Problem 1: For vertices 𝑠 ∈ 𝑉 (source) and 𝑡 ∈ 𝑉 (target) find the distance
and the shortest path from 𝑠 to 𝑡.

Problem 2: For a vertex 𝑠 ∈ 𝑉 (source) find distances and the shortest
paths from 𝑠 to every other vertex.

Problem 3: Find distances and the shortest paths from 𝑠 to 𝑡 for all pairs of
vertices.

If there are several shortest paths between two vertices, (usually) it is
enough to find any of them.

Negative weights

6

With respect to algorithmic issues, it is convenient to
distinguish the general case and the case of problems
with non-negative weights.

Reason: negative edge weights make several difficulties
for algorithms, and for many practical applications
weights are naturally non-negative.

Negative weights

7

If a graph contains a negative cycle (cycle whose total weight
is negative), some pairs of vertices have no shortest paths.

http://jeffe.cs.illinois.edu/teaching/algorithms/

Negative weights

8

Definition. A path is called simple iff it does not contain
any edge more than once.

For any pair of vertices 𝑠 and 𝑡, if 𝑡 is reachable from 𝑠
then there is a shortest simple path from 𝑠 and 𝑡, even in
case of negative cycles. But if there are negative cycles,
finding a shortest path becomes an NP-hard problem, i.e.
it cannot be solved efficiently.

Negative weights

9

If a directed graph has negative edges but has no
negative cycles, the shortest path problem can be solved
efficiently with the algorithms considered in this lecture.

For undirected graphs, there are specialized algorithms,
that will not be studied in this course.

Principle of optimality

10

The principle of optimality is the basic condition for
applicability of dynamic programming for optimization
problems.

Principle of optimality for the shortest path problem.
Let 𝐺 𝑉, 𝐸 be a graph with non-negative edge weights
𝑤:𝐸 → 𝑅+ and 𝑢, 𝑣 – two vertices of 𝐺. Any part of a
shortest path between 𝑢 and 𝑣 is a shortest path
between its endpoints.

Principle of optimality

11

Proof. Let us consider a path 𝑝 between 𝑢 and 𝑣, which
goes through vertices 𝑥 and 𝑦 (it may be that 𝑥 = 𝑢 or
𝑦 = 𝑣). Suppose that the part of 𝑝 between 𝑥 and 𝑦 is
not the shortest path between 𝑥 and 𝑦.

Principle of optimality

12

Let us replace this part of 𝑝 with the shortest path
between 𝑥 and 𝑦. We will yield the path 𝑝′, whose
weight is less then the weight of 𝑝. Thus, 𝑝 is not the
shortest path between 𝑢 and 𝑣.

Principle of optimality

13

Due to the principle of optimality, the shortest paths
from a given source vertex to all other vertices make the
shortest path tree.

Principle of optimality

14

For undirected graphs with negative edges, the principle
of optimality does not hold.

Dijkstra’s algorithm

15

Dijkstra’s* algorithm solves the Single Source Shortest Path
problem (SSSP), i.e. problems 1 and 2 from slide 5.

For simplicity, we will consider the case of directed graphs.

This algorithm can be constructed as a kind of dynamic
programming.

* See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the historical survey and the discussion about
the titles of algorithms.

http://jeffe.cs.illinois.edu/teaching/algorithms/

Dijkstra’s algorithm

16

Let us start from a recursive expression for the value to
be calculated, i.e. distance.

Let 𝛿(𝑣) denote the distance (= the weight of the
shortest path) from the given source vertex 𝑠 to a certain
vertex 𝑣.

Dijkstra’s algorithm

17

A naïve way to define 𝛿(𝑣) is this:

𝛿 𝑣 = ൝
0, 𝑣 = 𝑠

min
𝑢,𝑣 ∈𝐸

{𝛿 𝑢 + 𝑤(𝑢, 𝑣)} , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

But this recurrence is valid for DAGs only. If the graph
contains a directed cycle, we cannot use this recurrence
directly.

Dijkstra’s algorithm

18

To overcome this issue, we introduce the second parameter 𝑖. Let
𝛿(𝑖, 𝑣) denote the minimum weight of a path from 𝑠 to 𝑣 which
contains at most 𝑖 edges.

𝛿 𝑖, 𝑣 =

0, 𝑖𝑓 𝑣 = 𝑠 𝑎𝑛𝑑 𝑖 = 0
∞, 𝑖𝑓 𝑣 ≠ 𝑠 𝑎𝑛𝑑 𝑖 = 0

min[
𝛿 𝑖 − 1, 𝑣 ,

min
𝑢,𝑣 ∈𝐸

𝛿 𝑖 − 1, 𝑢 + 𝑤 𝑢, 𝑣
] , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Dijkstra’s algorithm

19

The pseudocode of the algorithm:

// Vertices are identified with

// their indices, 0..n-1

Create matrix d[0..n, 0..n-1].

// Initialization

d[0,s] = 0

for v = 0 to n-1:

if v != s then d[0,v] = ∞

Dijkstra’s algorithm

20

// Filling the table

for i=1 to n-1:

for each vertex v:

d[i,v] = d[i-1,v]

for each edge (u,v):

if d[i-1,u]+w[u,v]<d[i,v]

then d[i,v]=d[i-1,u]+w[u,v]

Dijkstra’s algorithm

21

// Filling the table

for i=1 to n-1:

for each vertex v:

d[i,v] = d[i-1,v]

for each edge (u,v):

if d[i-1,u]+w[u,v]<d[i,v]

then d[i,v]=d[i-1,u]+w[u,v]
Each edge is processed exactly once.
The order does not matter!

Dijkstra’s algorithm

22

// Filling the table

for i=1 to n-1:

for each vertex v:

d[i,v] = d[i-1,v]

for each edge (u,v):

if d[i-1,u]+w[u,v]<d[i,v]

then d[i,v]=d[i-1,u]+w[u,v]

Dijkstra’s algorithm

23

// Filling the table

for i=1 to n-1:

for each vertex v:

d[i,v] = d[i-1,v]

for each edge (u,v):

if d[i-1,u]+w[u,v]<d[i,v]

then d[i,v]=d[i-1,u]+w[u,v]

We can omit index i !!!

Dijkstra’s algorithm

24

// Filling the table

for i=1 to n-1:

for each edge (u,v):

if d[u]+w[u,v]<d[v]

then d[v]=d[u]+w[u,v]

Time complexity: 𝑂 𝑛𝑚 , 𝑛 = 𝑉 ,𝑚 = |𝐸|.

Further issues

25

In the next lecture we will explore more issues related to
shortest path problem:

• Dijkstra’s algorithm version for the case of non-negative edge
weights (based on the ‘best-first’ graph traversal).

• Building the shortest paths, in addition to the distances.

• Problem 3 (all-to-all shortest paths problem).

