
Algorithms and Data Structures
Module 3. Dynamic programming

Lecture 14
Dynamic programming for calculating 

distances in graphs. Part 1.



BFS: applications (lecture 5)

Graph G=(V,E).

A distance between vertices u and v is the minimum 
length of the path between u and v.

dist(A,E) = 2
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BFS: applications (lecture 5)

Weighted graph G=(V,E), 𝑤:𝐸 → 𝑅

A distance between vertices u and v is the minimum 
weight (=sum of edges’ weights) of the path between u
and v.

dist(A,E) = 18
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BFS: applications (lecture 5)

For unweighted graphs distances from 𝑠 ∈ 𝑉 to all 
other vertices can be calculated using BFS.

For weighted graphs: Dijkstra algorithm works like a BFS 
and calculates distances (from 𝑠 ∈ 𝑉 to each of other 
vertices) on a graph.
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Problem definition
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Given: a weighted graph 𝐺 𝑉, 𝐸 , edge weights 𝑤:𝐸 → 𝑅.

Problem 1: For vertices 𝑠 ∈ 𝑉 (source) and 𝑡 ∈ 𝑉 (target) find the distance 
and the shortest path from 𝑠 to 𝑡.

Problem 2: For a vertex 𝑠 ∈ 𝑉 (source) find distances and the shortest 
paths from 𝑠 to every other vertex.

Problem 3: Find distances and the shortest paths from 𝑠 to 𝑡 for all pairs of 
vertices.

If there are several shortest paths between two vertices, (usually) it is 
enough to find any of them.



Negative weights
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With respect to algorithmic issues, it is convenient to 
distinguish the general case and the case of problems 
with non-negative weights.

Reason: negative edge weights make several difficulties 
for algorithms, and for many practical applications 
weights are naturally non-negative.



Negative weights
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If a graph contains a negative cycle (cycle whose total weight 
is negative), some pairs of vertices have no shortest paths.

http://jeffe.cs.illinois.edu/teaching/algorithms/



Negative weights
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Definition. A path is called simple iff it does not contain 
any edge more than once.

For any pair of vertices 𝑠 and 𝑡, if 𝑡 is reachable from 𝑠
then there is a shortest simple path from 𝑠 and 𝑡, even in 
case of negative cycles. But if there are negative cycles, 
finding a shortest path becomes an NP-hard problem, i.e. 
it cannot be solved efficiently.



Negative weights
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If a directed graph has negative edges but has no 
negative cycles, the shortest path problem can be solved 
efficiently with the algorithms considered in this lecture.

For undirected graphs, there are specialized algorithms, 
that will not be studied in this course.



Principle of optimality
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The principle of optimality is the basic condition for 
applicability of dynamic programming for optimization 
problems.

Principle of optimality for the shortest path problem. 
Let 𝐺 𝑉, 𝐸 be a graph with non-negative edge weights 
𝑤:𝐸 → 𝑅+ and 𝑢, 𝑣 – two vertices of 𝐺.  Any part of a 
shortest path between 𝑢 and 𝑣 is a shortest path 
between its endpoints.



Principle of optimality
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Proof. Let us consider a path 𝑝 between 𝑢 and 𝑣, which 
goes through vertices 𝑥 and 𝑦 (it may be that 𝑥 = 𝑢 or 
𝑦 = 𝑣). Suppose that the part of 𝑝 between 𝑥 and 𝑦 is 
not the shortest path between 𝑥 and 𝑦.



Principle of optimality
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Let us replace this part of 𝑝 with the shortest path 
between 𝑥 and 𝑦. We will yield the path 𝑝′, whose 
weight is less then the weight of 𝑝. Thus, 𝑝 is not the 
shortest path between 𝑢 and 𝑣.



Principle of optimality
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Due to the principle of optimality, the shortest paths 
from a given source vertex to all other vertices make the 
shortest path tree.



Principle of optimality
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For undirected graphs with negative edges, the principle 
of optimality does not hold.



Dijkstra’s algorithm
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Dijkstra’s* algorithm solves the Single Source Shortest Path 
problem (SSSP), i.e. problems 1 and 2 from slide 5.

For simplicity, we will consider the case of directed graphs.

This algorithm can be constructed as a kind of dynamic 
programming.

* See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the historical survey and the discussion about 
the titles of algorithms.

http://jeffe.cs.illinois.edu/teaching/algorithms/


Dijkstra’s algorithm
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Let us start from a recursive expression for the value to 
be calculated, i.e. distance.

Let 𝛿(𝑣) denote the distance (= the weight of the 
shortest path) from the given source vertex 𝑠 to a certain 
vertex 𝑣.



Dijkstra’s algorithm
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A naïve way to define 𝛿(𝑣) is this:

𝛿 𝑣 = ൝
0, 𝑣 = 𝑠

min
𝑢,𝑣 ∈𝐸

{𝛿 𝑢 + 𝑤(𝑢, 𝑣)} , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

But this recurrence is valid for DAGs only. If the graph 
contains a directed cycle, we cannot use this recurrence 
directly.



Dijkstra’s algorithm
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To overcome this issue, we introduce the second parameter 𝑖. Let  
𝛿(𝑖, 𝑣) denote the minimum weight of a path from 𝑠 to 𝑣 which 
contains at most 𝑖 edges.

𝛿 𝑖, 𝑣 =

0, 𝑖𝑓 𝑣 = 𝑠 𝑎𝑛𝑑 𝑖 = 0
∞, 𝑖𝑓 𝑣 ≠ 𝑠 𝑎𝑛𝑑 𝑖 = 0

min[
𝛿 𝑖 − 1, 𝑣 ,

min
𝑢,𝑣 ∈𝐸

𝛿 𝑖 − 1, 𝑢 + 𝑤 𝑢, 𝑣
] , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Dijkstra’s algorithm
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The pseudocode of the algorithm:

// Vertices are identified with 

// their indices, 0..n-1

Create matrix d[0..n, 0..n-1].

// Initialization

d[0,s] = 0

for v = 0 to n-1:

if v != s then d[0,v] = ∞



Dijkstra’s algorithm
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// Filling the table

for i=1 to n-1:

for each vertex v:

d[i,v] = d[i-1,v]

for each edge (u,v):

if d[i-1,u]+w[u,v]<d[i,v] 

then d[i,v]=d[i-1,u]+w[u,v]



Dijkstra’s algorithm
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// Filling the table

for i=1 to n-1:

for each vertex v:

d[i,v] = d[i-1,v]

for each edge (u,v):

if d[i-1,u]+w[u,v]<d[i,v] 

then d[i,v]=d[i-1,u]+w[u,v]
Each edge is processed exactly once.
The order does not matter!



Dijkstra’s algorithm
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// Filling the table

for i=1 to n-1:

for each vertex v:

d[i,v] = d[i-1,v]

for each edge (u,v):

if d[i-1,u]+w[u,v]<d[i,v] 

then d[i,v]=d[i-1,u]+w[u,v]



Dijkstra’s algorithm
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// Filling the table

for i=1 to n-1:

for each vertex v:

d[i,v] = d[i-1,v]

for each edge (u,v):

if d[i-1,u]+w[u,v]<d[i,v] 

then d[i,v]=d[i-1,u]+w[u,v]

We can omit index i !!!



Dijkstra’s algorithm
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// Filling the table

for i=1 to n-1:

for each edge (u,v):

if d[u]+w[u,v]<d[v] 

then d[v]=d[u]+w[u,v]

Time complexity: 𝑂 𝑛𝑚 , 𝑛 = 𝑉 ,𝑚 = |𝐸|.



Further issues

25

In the next lecture we will explore more issues related to 
shortest path problem:

• Dijkstra’s algorithm version for the case of non-negative edge 
weights (based on the ‘best-first’ graph traversal).

• Building the shortest paths, in addition to the distances.

• Problem 3 (all-to-all shortest paths problem).


