
Algorithms and Data Structures
Module 3. Dynamic programming

Lecture 15
Dynamic programming for calculating 

distances in graphs. Part 2.



Dijkstra’s algorithm

2

Let  𝛿(𝑖, 𝑣) denote the minimum weight of a path from 𝑠
to 𝑣 which contains at most 𝑖 edges.

𝛿 𝑖, 𝑣 =

0, 𝑖𝑓 𝑣 = 𝑠 𝑎𝑛𝑑 𝑖 = 0
∞, 𝑖𝑓 𝑣 ≠ 𝑠 𝑎𝑛𝑑 𝑖 = 0

min[
𝛿 𝑖 − 1, 𝑣 ,

min
𝑢,𝑣 ∈𝐸

𝛿 𝑖 − 1, 𝑢 + 𝑤 𝑢, 𝑣
] , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Dijkstra’s algorithm

3

The pseudocode of the algorithm:

// Vertices are identified with 

// their indices, 0..n-1

Create matrix d[0..n-1].

// Initialization

d[s] = 0

for v = 0 to n-1:

if v != s then d[v] = ∞



Dijkstra’s algorithm

4

// Filling the table

for i=1 to n-1:

for each edge (u,v):

if d[u]+w[u,v]<d[v] 

then d[v]=d[u]+w[u,v]

Time complexity: 𝑂 𝑛𝑚 , 𝑛 = 𝑉 ,𝑚 = |𝐸|.



Further issues

5

In the next lecture we will explore more issues related to 
shortest path problem:

• Dijkstra’s algorithm version for the case of non-negative edge 
weights (based on the ‘best-first’ graph traversal).

• Building the shortest paths, in addition to the distances.

• Problem 3 (all-to-all shortest paths problem).



Dijkstra’s algorithm: non-negative edges

6

Let us see at the Dijkstra’s algorithm for the general case.

// Filling the table

for i=1 to n-1:

for each edge (u,v):

if d[u]+w[u,v]<d[v] 

then d[v]=d[u]+w[u,v]

For the case of non-negative edges, we can organize calculations in 
a way that each edge is processed at most once.



Dijkstra’s algorithm: non-negative edges

7

For the case of non-negative edges, we can organize 
calculations in a way that each edge is processed at most 
once.

In order to get such improvement we need to analyze and 
process vertices in the order of increasing their distances from 
𝑠. We select an unprocessed vertex 𝑣 with the minimum 
tentative distance from 𝑠 and build the shortest path to 𝑣 by 
augmenting the path to some other previously processed 
vertex (the predecessor of 𝑣).



Dijkstra’s algorithm: non-negative edges

8

The initialization is essentially the same:

// Vertices are identified with 

// their indices, 0..n-1

Create matrix d[0..n-1].

// Initialization

d[s] = 0

for v = 0 to n-1:

if v != s then d[v] = ∞



Dijkstra’s algorithm: non-negative edges

9

But we will use a priority queue similar to BFS. The keys 
will be the tentative distances from 𝑠 to all other vertices

for v = 0 to n-1: Enqueue(v,d[v]);

Then we iteratively process vertices; at each iteration we 
select the vertex with the minimum tentative distance.



Dijkstra’s algorithm: non-negative edges

10

While (Queue is not empty):

u = GetMin()

DelMin()

for each edge (u,v):

if d[u]+w[u,v]<d[v] then 

d[v]=d[u]+w[u,v]

ChangePriority(v, d[v])

Each vertex is extracted from the priority queue only once. Hence, each 
edge is processed at most once. Hence, time complexity: 𝑂 𝑚 ⋅ log 𝑛 , 
where 𝑚 is the quantity of edges, 𝑂 log 𝑛 is the complexity of a priority 
queue operation. Time complexity of the general version: 𝑂 𝑛𝑚



Dijkstra’s algorithm: building paths

11

Besides calculating distances, for many applications we need 
to build the shortest paths themselves.

Due to the principle of optimality, the shortest paths from a 
given source vertex to all other vertices make the shortest 
path tree.

We can build the shortest path to 𝑣 by augmenting the path 
to some other previously processed vertex (the predecessor of 
𝑣).



Dijkstra’s algorithm: building paths

12



Dijkstra’s algorithm: building paths

13

The principal idea is similar to the BFS-based version of 
the algorithm: during the run of the algorithm we keep 
the predecessors for all vertices in an array 𝑝[0. . 𝑛 − 1].

Vertex 𝑢 is the predecessor of the vertex 𝑣 iff we update 
𝑑[𝑣] while processing the edge (𝑢, 𝑣).



Dijkstra’s algorithm: building paths

14

// Vertices are identified with 

// their indices, 0..n-1

Create matrices d[0..n-1], p[0..n-1].

// Initialization

d[s] = 0; p[s] = NULL;

for v = 0 to n-1:

if v != s then 

d[v] = ∞; p[v] = NULL;



Dijkstra’s algorithm: building paths

15

Dijkstra’s algorithm for the general case:

// Filling the table

for i=1 to n-1:

for each edge (u,v):

if d[u]+w[u,v]<d[v] then 

d[v]=d[u]+w[u,v];

p[v] = u;



Dijkstra’s algorithm: building paths

16

Dijkstra’s algorithm for the case of non-negative edges:
While (Queue is not empty):

u = GetMin()

DelMin()

for each edge (u,v):

if d[u]+w[u,v]<d[v] then 

d[v]=d[u]+w[u,v]

ChangePriority(v, d[v])

p[v] = u;



Dijkstra’s algorithm: building paths

17

Building a shortest path from 𝑠 to 
𝑣: start from 𝑣 and reconstruct 
the path backward to 𝑠. We move 
from a current vertex 𝑢

to 𝑥 = 𝑝 𝑢 , then to 𝑦 = 𝑝 𝑥 ,… , 
until we get 𝑠.

The shortest 𝑠 ⇝ 𝑎 path is:
𝑠 ⟶ 𝑓 ⟶ 𝑏 ⟶ 𝑎



All-to-all shortest paths problem

18

Problem 3: Find distances and the shortest paths from 𝑠 to 𝑡 for all pairs of 
vertices.

The result we need: distance matrix 𝐷 = {𝑑[𝑖, 𝑗]}, where 𝑑 𝑖, 𝑗 is the 
distance from 𝑖 to 𝑗.

An obvious way to solve this problem: for each 𝑣 ∈ 𝑉 find the shortest 
paths from 𝑣 (as a source vertex 𝑠) to all other vertices. The overall 
complexity:

• 𝑂 𝑛𝑚 ⋅ log 𝑛 for non-negative weights’ case;

• 𝑂 𝑛4 for the general case.



All-to-all shortest paths problem

19

Let us try to apply the dynamic programming approach 
to this problem. (We still consider the case of graphs 
without negative cycles.)

At first we write the recurrence for this problem. 

We will apply the approach which differs from that of 
Dijkstra’s algorithm.



All-to-all shortest paths problem

20

Let us number the vertices from 1 to 𝑛, the order does 
not matter.

Let 𝜋(𝑢, 𝑣, 𝑟) denote the shortest path from 𝑢 to 𝑣 that 
passes through only vertices numbered at most 𝑟. That 
is, the intermediate vertices of 𝜋(𝑢, 𝑣, 𝑟) should have 
numbers at most 𝑟.



All-to-all shortest paths problem

21

• The path 𝜋(𝑢, 𝑣, 0) cannot pass through any intermediate vertices, so 
it must be the edge from u to v. If 𝑢 and 𝑣 are not adjacent, 𝜋(𝑢, 𝑣, 0)
is undefined.

• For any integer r > 0, either 𝜋(𝑢, 𝑣, 𝑟) passes through vertex r or it 
doesn’t.
o If 𝜋(𝑢, 𝑣, 𝑟) passes through vertex r, it consists of a subpath from u to r, 

followed by a subpath from r to v. Both of those subpaths pass through only 
vertices numbered at most 𝑟 − 1. Moreover, those subpaths are as short 
(have as little weight) as possible with this restriction. So the two subpaths
must be 𝜋(𝑢, 𝑟, 𝑟 − 1) and 𝜋(𝑟, 𝑣, 𝑟 − 1).



All-to-all shortest paths problem

22

• For any integer r > 0, either 𝜋(𝑢, 𝑣, 𝑟) passes through vertex r or it 
doesn’t.
• …

• On the other hand, if 𝜋(𝑢, 𝑣, 𝑟) does not pass through vertex r, then it passes 
through only vertices numbered at most 𝑟 − 1, and it must be the shortest 
path with this restriction. So in this case, we must have 𝜋 𝑢, 𝑣, 𝑟 =
𝜋(𝑢, 𝑣, 𝑟 − 1).



All-to-all shortest paths problem

23

Hence, the following recurrence holds for the distances:

𝛿 𝑢, 𝑣, 𝑟 = ൞

𝑤 𝑢, 𝑣 , 𝑖𝑓 𝑟 = 0

min
𝛿 𝑢, 𝑣, 𝑟 − 1 ,

𝛿 𝑢, 𝑟, 𝑟 − 1 + 𝛿 𝑟, 𝑣, 𝑟 − 1
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

All we need is to implement this recurrence in code.



All-to-all shortest paths problem

24

// Initialization

for all vertices u:

for all vertices v:

d[u,v,0] = w[u,v]

// Fill in matrix D

for r from 1 to n:

for all vertices u:

for all vertices v:

if d[u,v,r-1] < d[u,r,r-1]+d[r,v,r-1] then

d[u,v,r] = d[u,v,r-1]

else

d[u,v,r] = d[u,r,r-1]+d[r,v,r-1] 



All-to-all shortest paths problem

25

// Initialization

for all vertices u:

for all vertices v:

d[u,v,0] = w[u,v]

// Fill in matrix D

for r from 1 to n:

for all vertices u:

for all vertices v:

if d[u,v,r-1] < d[u,r,r-1]+d[r,v,r-1] then

d[u,v,r] = d[u,v,r-1]

else

d[u,v,r] = d[u,r,r-1]+d[r,v,r-1] 

We do not need the 3rd dimention for D.

The order is arbitrary, in fact.



Floyd-Warshall algorithm

26

Floyd-Warshall algorithm:
// Initialization

for all vertices u:

for all vertices v:

d[u,v] = w[u,v] // We just copy matrix: D = W

// Fill in matrix D

for all vertices r:

for all vertices u:

for all vertices v:

if d[u,v] > d[u,r]+d[r,v] then

d[u,v] = d[u,r]+d[r,v]

Time complexity: 𝑂(𝑛3).



Floyd-Warshall algorithm: building paths

27

To build the shortest paths, we trace the maximum 

number of intermediate vertices on the shortest path: 

p[u,v].

Update these values every time we update d[u,v].



Floyd-Warshall algorithm

28

// Initialization

for all vertices u:

for all vertices v:

d[u,v] = w[u,v]

p[u,v] = NULL

// Fill in matrices D and P

for all vertices r:

for all vertices u:

for all vertices v:

if d[u,v] > d[u,r]+d[r,v] then

d[u,v] = d[u,r]+d[r,v]

p[u,v] = r



Floyd-Warshall algorithm

29

Building a shortest path from 𝑢 to 𝑣: start 
from the pair of the endpoints: 𝑢, 𝑣 and 
iteratively fill in the intermediate vertices 
according to 𝑝[. , . ]. 

The process of building the shortest 𝑠 ⇝ 𝑎
path:

𝑠, 𝑎; 𝑝 𝑠, 𝑎 = 𝑓

𝑠, 𝑓, 𝑎; 𝑝 𝑠, 𝑓 = 𝑁𝑈𝐿𝐿, 𝑝 𝑓, 𝑎 = 𝑏;

𝑠, 𝑓, 𝑏, 𝑎.


