
Algorithms and Data Structures
Module 3. Dynamic programming

Lecture 16
Edit distance.

The Longest Common Subsequence.

Edit distance

2

The notion of ‘distance’ in math is the generalization of a
‘physical distance’ (= Euclidian distance). In general,
’distance’ (or ‘metric’) is the measure of difference
between two objects (the more is the distance, the more
different the two objects are).

Edit distance

3

Definition. Distance (metric) is a numerical function
𝑑: 𝑋 × 𝑋 ⟶ 𝑅+ which satisfies ‘metric axioms’ for all
𝑥, 𝑦, 𝑧 ∈ 𝑋:

1. 𝑑 𝑥, 𝑦 = 0 ⇔ 𝑥 = 𝑦;

2. 𝑑 𝑥, 𝑦 = 𝑑(𝑦, 𝑥);

3. 𝑑 𝑥, 𝑦 ≤ 𝑑 𝑥, 𝑧 + 𝑑(𝑧, 𝑦); (triangle inequality)

Edit distance

4

Examples of distances are:

• Euclidian distance in 𝑅𝑛: 𝑑 𝑥, 𝑦 = 2 σ𝑖=1
𝑛 𝑥𝑖 − 𝑦𝑖

2

• Graph distance: 𝑑𝐺(𝑥, 𝑦) is the length (weight) of the
shortest path between vertices 𝑥 and 𝑦.

• Hamming distance: if 𝑥 and 𝑦 are strings of equal length,
𝑑𝐻(𝑥, 𝑦) is the number of positions in which 𝑥 and 𝑦 differ.

• Edit distance.

Edit distance

5

Definitions.

• An alphabet is a finite set of distinct elements, called
symbols or letters.

Examples: 0,1 , 0,1,2,3,4,5,6,7,8,9 , 𝑎, 𝑏, … , 𝑧 , {𝐴, 𝐶, 𝐺, 𝑇}

• A word in alphabet A is a finite sequence (string)of symbols
of A. The symbols in a word may coincide. The order of
symbols in a word does matter.

Examples: ‘AACTAC’ is a word of length 6.

Edit distance

6

Let P,Q and R be sequences (words, strings) in the same
alphabet.

P = ‘HONEY’

Q = ‘FOOD’

R = ‘MONEY’

Is ‘HONEY’ closer to ‘FOOD’ then to ‘MONEY’?

Edit distance

7

Let P,Q and R be sequences (words, strings) in the same
alphabet.

P = ‘HONEY’ (1 difference)

Q = ‘FOOD’

R = ‘MONEY’

(4 differences)

Edit distance

8

Definition

Let P and Q be two sequences (words, strings).

The edit distance between P and Q is the minimum
number of operations required to transform P into Q (or
vice versa).

There are several versions of edit distance, differing in
the set of operations considered.

Edit distance

9

Definition

The Levenshtein distance is the minimum number of
insertions/deletions (indels) or substitutions required to
transform P into Q (or vice versa).

http://jeffe.cs.illinois.edu/teaching/algorithms/

http://jeffe.cs.illinois.edu/teaching/algorithms/

Edit distance

10

Definition

The Levenshtein distance is the minimum number of
insertions/deletions (indels) or substitutions required to
transform P into Q (or vice versa).

Edit distance

11

Other possible operations:

• Transpositions: CFOFEE -> COFFEE

• Inversions: AACGATTTA -> AATTAGCTA

Edit distance

12

Let us design a DP algorithm for calculating Levenshtein
edit distance.

The 1st step: we need a recurrence for the optimal
solution (= the minimum number of operations).

To build a recurrence we need to formulate the principle
of optimality for the given problem.

Edit distance

13

Generic form of the principle of optimality: a part of an
optimal solution is an optimal solution of a subproblem.

Example (http://jeffe.cs.illinois.edu/teaching/algorithms/):

P = ‘ALGORITHM’

Q = ‘ALTRUISTIC’

http://jeffe.cs.illinois.edu/teaching/algorithms/

Edit distance

14

Let us consider an optimal alignment of these strings.

P = ‘ALGORITHM’

Q = ‘ALTRUISTIC’

We can formulate the principle of optimality: for all k, the
leftmost k columns of an optimal alignment represent an
optimal alignment for the corresponding prefixes of the
strings.

Edit distance

15

Let us consider an optimal alignment of these strings.

P = ‘ALGORITHM’

Q = ‘ALTRUISTIC’

We can formulate the principle of optimality: for all k, the
leftmost k columns of an optimal alignment represent an
optimal alignment for the corresponding prefixes of the
strings.

Edit distance

16

The principle of optimality:

For all k, the leftmost k columns of an optimal
alignment represent an optimal alignment for the
corresponding prefixes of the strings.

Let 𝛿(𝑖, 𝑗) be the edit distance between 𝑃[1. . 𝑖] and
𝑄[1. . 𝑗]. We need to calculate 𝛿(𝑚, 𝑛), for 𝑚 = 𝑃 , 𝑛 =
|𝑄|.

Edit distance

17

Let 𝛿(𝑖, 𝑗) be the edit distance between 𝑃[1. . 𝑖] and
𝑄[1. . 𝑗].

The last column in the optimal alignment of 𝑃 and 𝑄 can
represent one of the 3 situations:

1) Insertion: 𝛿(𝑖, 𝑗)=𝛿 𝑖, 𝑗 − 1 + 1

Edit distance

18

2) Deletion: 𝛿(𝑖, 𝑗)=𝛿 𝑖 − 1, 𝑗 + 1

3) Substitution:

a) 𝑝 𝑖 ≠ 𝑞[𝑗]: 𝛿(𝑖, 𝑗)=𝛿 𝑖 − 1, 𝑗 − 1 + 1

b) 𝑝 𝑖 = 𝑞[𝑗]: 𝛿(𝑖, 𝑗)=𝛿 𝑖 − 1, 𝑗 − 1

Edit distance

19

Base cases: 𝑖 = 0 or 𝑗 = 0. => one of the prefixes, or
both, are empty.

• 𝑖 = 0: to transform an empty string to a string of length
𝑗, we need 𝑗 insertions => 𝛿 0, 𝑗 = 𝑗.

• 𝑗 = 0: => 𝛿 𝑖, 0 = 𝑖.

Edit distance

20

Recurrence:

𝛿 𝑖, 𝑗 =

𝑗, 𝑖𝑓 𝑖 = 0
𝑖, 𝑖𝑓 𝑗 = 0

min

𝛿(𝑖, 𝑗 − 1)
𝛿(𝑖 − 1, 𝑗)

𝛿 𝑖 − 1, 𝑗 − 1 + Δ(𝑝 𝑖 , 𝑞[𝑗])
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,

where Δ(𝑥, 𝑦) = ቊ
0, 𝑖𝑓 𝑥 = 𝑦
1, 𝑖𝑓 𝑥 ≠ 𝑦

Edit distance

21

Let us implement this recurrence in (pseudo)code.

• The recurrent function 𝛿(𝑖, 𝑗) has 2 arguments => we
need a 2D table (matrix) to store the results for the
subproblems.

•D[0..m, 0..n]

Edit distance

22

•A possible order we fill in the table D depends on the
data dependencies in the recurrence.

• To calculate d[𝑖, 𝑗], we need only values of d[
]

𝑖 −
1, 𝑗 , 𝑑[𝑖, 𝑗 − 1] and 𝑑[𝑖 − 1, 𝑗 − 1].

Edit distance

23

// Initialization (the base cases)

for i=0 to m: d[i,0] = i;

for j=0 to n: d[0,j] = j;

// Filling the table

for i=1 to m:

for j=1 to n:

ins = d[i,j-1]+1

del = d[i-1,j]+1

if p[i]=q[j] then sub = d[i-1,j-1]

else sub = d[i-1,j-1]+1

d[i,j] = min(ins,del,sub)

Edit distance

24

Building an optimal alignment:

• start from the [m,n] entry (bottom-right
corner);

• move backwards to the [0,0] (top-left
corner);

• at the current entry [i,j]: compare d[i,j-
1]+1, d[i-1,j]+1, d[i-1,j-1](+1) and move to
the entry corresponding to the minimum
expression + make appropriate
operations in the alinment.

Edit distance

25

Edit distance

26

The space and time complexities are:
𝑂(𝑚 ⋅ 𝑛).

Can we reduce the space
complexity?

Edit distance

27

Q: Can we reduce the space
complexity?

A: Yes, we can– if we need the
distance only. We can keep 2 rows
instead of n rows. Thus, we reduce
the space complexity from 𝑂(𝑚 ⋅ 𝑛)
to 𝑂(𝑚).

Edit distance

28

Some illustrative online calculators:

https://phiresky.github.io/levenshtein-demo/

http://www.let.rug.nl/~kleiweg/lev/

https://phiresky.github.io/levenshtein-demo/
http://www.let.rug.nl/~kleiweg/lev/

Edit distance

29

Generalization of the edit distance: weights for
operations (indels, substitutions).

Special cases:

•𝑤 𝑖𝑛𝑑𝑒𝑙 = +∞; 𝑤(𝑠𝑢𝑏)=1 => we get Hamming
distance.

•𝑤 𝑖𝑛𝑑𝑒𝑙 =0; 𝑤(𝑠𝑢𝑏) = +∞ => we get the Longest
Common Subsequence (LCS) problem.

Longest Common Subsequence

30

Definitions

• Let P be a word (sequence). A word/sequence Q is a subsequence
of P iff Q contains some letters of P in the same order, with
possible gaps.

A formal definition. Let 𝑃 = 𝑝1𝑝2…𝑝𝑛 and 𝑄 = 𝑞1𝑞2…𝑞𝑚, 𝑚 ≤
𝑛. Q is a subsequence of P iff there exists an increasing sequence
of indices 1 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑚 ≤ 𝑛 such that 𝑞𝑘 = 𝑝𝑖𝑘 for all
𝑘 = 1,… ,𝑚.

Example: ‘LOT’ is a subsequence of ‘ALGORITHM’.

Longest Common Subsequence

31

Definitions

• S is a common subsequence of P and Q if S is a subsequence
of P and a subsequence of Q.

Example: ‘LOT’ is a common subsequence of ‘ALGORITHM’ and
‘SLOWEST’.

• S is the longest common subsequence (LCS) of P and Q if S is
a common subsequence of P and Q of the maximum length.

Longest Common Subsequence

32

Idea of a recurrence for the LCS problem.

Let 𝑃 = 𝑝1𝑝2…𝑝𝑛 and 𝑄 = 𝑞1𝑞2…𝑞𝑚.

The LCS of P and Q is the longest of the 3 subsequences:

1) 𝐿𝐶𝑆(𝑝1𝑝2…𝑝𝑛−1, 𝑞1𝑞2…𝑞𝑚−1) + 𝑝𝑛, if 𝑝𝑛 = 𝑞𝑚;

2) 𝐿𝐶𝑆(𝑝1𝑝2…𝑝𝑛−1, 𝑞1𝑞2…𝑞𝑚)

3) 𝐿𝐶𝑆(𝑝1𝑝2…𝑝𝑛, 𝑞1𝑞2…𝑞𝑚−1)

Longest Common Subsequence

33

Base cases: if either of P and Q is empty, then 𝐿𝐶𝑆(𝑃, 𝑄)
is an empty string.

The computational scheme is very similar to that of the
algorithm for edit distance.

Weighted edit distance

34

Generalization of the edit distance: weights for
operations (indels, substitutions).

In the general case, the weights for substitutions may
differ for different pairs of letters.

Weighted edit distance

35

Application:
protein structures
comparison

Weighted edit distance

36

Application: error correction

• misprints (typos) of users

• errors of the optical character recognition (OCR)
software

O
C (?)

P (?)

Weighted edit distance

37

DP algorithm: modification Needleman-Wunsch
algorithm.

Why modification? The original Needleman-Wunsch
algorithm maximizes similarity instead of minimizing
distance.

Weighted edit distance

38

// Initialization (the base cases)

for i=0 to m: d[i,0] = i*w_indel;

for j=0 to n: d[0,j] = j*w_indel;

// Filling the table

for i=1 to m:

for j=1 to n:

ins = d[i,j-1]+w_indel

del = d[i-1,j]+w_indel

sub = d[i-1,j-1]+w_sub[p[i],q[j]]

d[i,j] = min(ins,del,sub)

