Algorithms and Data Structures Module 3. Dynamic programming

Lecture 16

Edit distance.
The Longest Common Subsequence.

Edit distance

The notion of 'distance' in math is the generalization of a 'physical distance' (= Euclidian distance). In general, 'distance' (or 'metric') is the measure of difference between two objects (the more is the distance, the more different the two objects are).

Edit distance

Definition. Distance (metric) is a numerical function $d: X \times X \rightarrow R_{+}$which satisfies 'metric axioms' for all $x, y, z \in X$:

1. $d(x, y)=0 \Leftrightarrow x=y$;
2. $d(x, y)=d(y, x)$;
3. $d(x, y) \leq d(x, z)+d(z, y)$; (triangle inequality)

Edit distance

Examples of distances are:

- Euclidian distance in $R^{n}: d(x, y)=\sqrt[2]{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}$
- Graph distance: $d_{G}(x, y)$ is the length (weight) of the shortest path between vertices x and y.
- Hamming distance: if x and y are strings of equal length, $d_{H}(x, y)$ is the number of positions in which x and y differ.
- Edit distance.

Edit distance

Definitions.

- An alphabet is a finite set of distinct elements, called symbols or letters.
Examples: $\{0,1\},\{0,1,2,3,4,5,6,7,8,9\},\{a, b, \ldots, z\},\{A, C, G, T\}$
- A word in alphabet A is a finite sequence (string) of symbols of A. The symbols in a word may coincide. The order of symbols in a word does matter.
Examples: 'AACTAC' is a word of length 6.

Edit distance

Let P, Q and R be sequences (words, strings) in the same alphabet.

P = 'HONEY'
$\mathrm{Q}=$ ' FOOD '
$R=$ 'MONEY'
Is 'HONEY' closer to 'FOOD' then to 'MONEY'?

Edit distance

Let P, Q and R be sequences (words, strings) in the same alphabet.

$$
\begin{aligned}
& \mathrm{P}=\text { 'HONEY' } \\
& \mathrm{Q}=\text { ' } \mathrm{FOOD} \\
& \mathrm{R}=\text { ' } \mathrm{MONEY}
\end{aligned}
$$

H ONEY

MONEY (1 difference)

H O N E Y

FO OD
(4 differences)

Edit distance

Definition

Let P and Q be two sequences (words, strings).
The edit distance between P and Q is the minimum number of operations required to transform P into Q (or vice versa).
There are several versions of edit distance, differing in the set of operations considered.

Edit distance

Definition

The Levenshtein distance is the minimum number of insertions/deletions (indels) or substitutions required to transform P into Q (or vice versa).
$\underline{F O O D} \rightarrow$ MOOD \rightarrow MOND \rightarrow MONED \rightarrow MONEY
http://jeffe.cs.illinois.edu/teaching/algorithms/

Edit distance

Definition

The Levenshtein distance is the minimum number of insertions/deletions (indels) or substitutions required to transform P into Q (or vice versa).

$$
\begin{aligned}
& \text { HONEY } \\
& \text { FO O D }
\end{aligned}
$$

HO NEY
COFFEE

Edit distance

Other possible operations:

- Transpositions: CFOFEE -> COFFEE
- Inversions: AACGATTTA -> AATTAGCTA

Edit distance

Let us design a DP algorithm for calculating Levenshtein edit distance.

The $1^{\text {st }}$ step: we need a recurrence for the optimal solution (= the minimum number of operations). To build a recurrence we need to formulate the principle of optimality for the given problem.

Edit distance

Generic form of the principle of optimality: a part of an optimal solution is an optimal solution of a subproblem.
Example (http://ieffe.cs.illinois.edu/teaching/algorithms/):

$$
\begin{aligned}
& \text { P = 'ALGORITHM' } \\
& \mathrm{Q}=\text { 'ALTRUISTIC' }
\end{aligned}
$$

Edit distance

Let us consider an optimal alignment of these strings.
P = 'ALGORITHM'
$\mathrm{Q}=$ 'ALTRUISTIC'
A L G O R
I T
A L T R U I S T I C

We can formulate the principle of optimality: for all k, the leftmost k columns of an optimal alignment represent an optimal alignment for the corresponding prefixes of the strings.

Edit distance

Let us consider an optimal alignment of these strings.
P = 'ALGORITHM'
$\mathrm{Q}=$ 'ALTRUISTIC'

We can formulate the principle of optimality: for all k, the leftmost k columns of an optimal alignment represent an optimal alignment for the corresponding prefixes of the strings.

Edit distance

The principle of optimality:
For all k, the leftmost k columns of an optimal alignment represent an optimal alignment for the corresponding prefixes of the strings.
Let $\delta(i, j)$ be the edit distance between $P[1 . . i]$ and $Q[1 . . j]$. We need to calculate $\delta(m, n)$, for $m=|P|, n=$ $|Q|$.

Edit distance

Let $\delta(i, j)$ be the edit distance between $P[1 . . i]$ and $Q[1 . . j]$.
The last column in the optimal alignment of P and Q can represent one of the 3 situations:

1) Insertion: $\delta(i, j)=\delta(i, j-1)+1$

ALGOR
ALTR

Edit distance

2) Deletion: $\delta(i, j)=\delta(i-1, j)+1$

3) Substitution:
a) $p[i] \neq q[j]: \delta(i, j)=\delta(i-1, j-1)+1$

b) $p[i]=q[j]: \delta(i, j)=\delta(i-1, j-1)$| ALGO | R |
| :---: | :---: |
| ALT | R |

Edit distance

Base cases: $i=0$ or $j=0$. => one of the prefixes, or both, are empty.
$-i=0$: to transform an empty string to a string of length j, we need j insertions $=>\delta(0, j)=j$.
$\cdot j=0: \Rightarrow \delta(i, 0)=i$.

Edit distance

Recurrence:

$$
\delta(i, j)=\left\{\begin{array}{cl}
j, & \begin{array}{c}
\text { if } i=0 \\
i,
\end{array} \\
\text { if } j=0 \\
\min \{(i, j-1) \\
\delta(i-1, j) \\
\delta(i-1, j-1)+\Delta(p[i], q[j])
\end{array}\right\}, \quad \text { otherwise },
$$

where $\Delta(x, y)= \begin{cases}0, & \text { if } x=y \\ 1, & \text { if } x \neq y\end{cases}$

Edit distance

Let us implement this recurrence in (pseudo)code.

- The recurrent function $\delta(i, j)$ has 2 arguments $=>$ we need a 2D table (matrix) to store the results for the subproblems.
- D[0..m, 0..n]

Edit distance

- A possible order we fill in the table D depends on the data dependencies in the recurrence.
- To calculate $\mathrm{d}[i, j]$, we need only values of $\mathrm{d}[i-$ $1, j], d[i, j-1]$ and $d[i-1, j-1]$.

Edit distance

```
// Initialization (the base cases)
for i=0 to m: d[i,0] = i;
for j=0 to n: d[0,j] = j;
// Filling the table
for i=1 to m:
    for j=1 to n:
        ins = d[i,j-1]+1
        del = d[i-1,j]+1
        if p[i]=q[j] then sub = d[i-1,j-1]
        else sub = d[i-1,j-1]+1
        d[i,j] = min(ins,del,sub)
```


Edit distance

Building an optimal alignment:

- start from the [m, n] entry (bottom-right corner);
- move backwards to the [0,0] (top-left corner);
- at the current entry [i,j]: compare $\mathrm{d}[\mathrm{i}, \mathrm{j}$ $1]+1, d[i-1, j]+1, d[i-1, j-1](+1)$ and move to the entry corresponding to the minimum expression + make appropriate operations in the alinment.

Edit distance

A	L	G	O	R	I		T	H	M
A	L	T	R	U	I	S	T	I	C

```
A L G O R I T H M A L T R U I S T I C
```

$\begin{array}{lllllllllll}A & L & G & O & R & & I & & T & H & M \\ A & L & T & & R & U & I & S & T & I & C\end{array}$

Edit distance

The space and time complexities are: $O(m \cdot n)$.

Can we reduce the space complexity?

Edit distance

Q: Can we reduce the space complexity?
A: Yes, we can- if we need the distance only. We can keep 2 rows instead of n rows. Thus, we reduce the space complexity from $O(m \cdot n)$ to $O(m)$.

Edit distance

Some illustrative online calculators:

https://phiresky.github.io/levenshtein-demo/
http://www.let.rug.nl/~kleiweg/lev/

Edit distance

Generalization of the edit distance: weights for operations (indels, substitutions).

Special cases:

- $w($ indel $)=+\infty ; w(s u b)=1=>$ we get Hamming distance.
- $w($ indel $)=0 ; w(s u b)=+\infty=>$ we get the Longest Common Subsequence (LCS) problem.

Longest Common Subsequence

Definitions

- Let P be a word (sequence). A word/sequence Q is a subsequence of P iff Q contains some letters of P in the same order, with possible gaps.
A formal definition. Let $P=p_{1} p_{2} \ldots p_{n}$ and $Q=q_{1} q_{2} \ldots q_{m}, m \leq$ n. Q is a subsequence of P iff there exists an increasing sequence of indices $1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n$ such that $q_{k}=p_{i_{k}}$ for all $k=1, \ldots, m$.

Example: 'LOT' is a subsequence of 'ALGORITHM'.

Longest Common Subsequence

Definitions

- S is a common subsequence of P and Q if S is a subsequence of P and a subsequence of Q.

Example: 'LOT' is a common subsequence of 'ALGORITHM' and 'SLOWEST'.

- S is the longest common subsequence (LCS) of P and Q if S is a common subsequence of P and Q of the maximum length.

Longest Common Subsequence

Idea of a recurrence for the LCS problem.
Let $P=p_{1} p_{2} \ldots p_{n}$ and $Q=q_{1} q_{2} \ldots q_{m}$.
The LCS of P and Q is the longest of the 3 subsequences:

1) $\operatorname{LCS}\left(p_{1} p_{2} \ldots p_{n-1}, q_{1} q_{2} \ldots q_{m-1}\right)+p_{n}$, if $p_{n}=q_{m}$;
2) $\operatorname{LCS}\left(p_{1} p_{2} \ldots p_{n-1}, q_{1} q_{2} \ldots q_{m}\right)$
3) $\operatorname{LCS}\left(p_{1} p_{2} \ldots p_{n}, q_{1} q_{2} \ldots q_{m-1}\right)$

Longest Common Subsequence

Base cases: if either of P and Q is empty, then $\operatorname{LCS}(P, Q)$ is an empty string.

The computational scheme is very similar to that of the algorithm for edit distance.

Weighted edit distance

Generalization of the edit distance: weights for operations (indels, substitutions).
In the general case, the weights for substitutions may differ for different pairs of letters.

Weighted edit distance

Application: protein structures comparison

Weighted edit distance

Application: error correction

- misprints (typos) of users
- errors of the optical character recognition (OCR) software

Weighted edit distance

DP algorithm: modification Needleman-Wunsch algorithm.

Why modification? The original Needleman-Wunsch algorithm maximizes similarity instead of minimizing distance.

Weighted edit distance

```
// Initialization (the base cases)
for i=0 to m: d[i,0] = i*w_indel;
for j=0 to n: d[0,j] = j*w_indel;
// Filling the table
for i=1 to m:
    for j=1 to n:
        ins = d[i,j-1]+w_indel
        del = d[i-1,j]+w_indel
        sub = d[i-1,j-1]+w_sub[p[i],q[j]]
        d[i,j] = min(ins,del,sub)
```

