
Algorithms and Data Structures
Module 4. NP-hard problems

Lecture 21
Inexact algorithms. Part 2.



TSP: solving (lecture 18)

Possible options for solving any NP-hard problem (e.g. TSP):

• Exactly but inefficiently: 
✓exhaustive search (brute-force, backtracking)

✓smart search (branch-and-bound)

• Exactly, efficiently, but not universally: 
✓efficiently solvable special cases.

• Efficiently but inexactly: 
✓approximate algorithms,

✓heuristics

2



Heuristics for TSP

There are many ideas/principles that can be used for designing a 
heuristics algorithm.

We will study just two of them:

• Greedy heuristics.

• Local search.

3



Local search

Principle scheme of a local search algorithm:

•Build the initial feasible solution.

• Improve the current solution iteratively, applying 
transformations from a predefined set.

• Stop when no improvement is possible.

Thus, a local search algorithm builds a local minimum.

4



Local search

Local search has some valuable advantages:

•Universality, generality. The general scheme can be 
easily adapted for most optimization problems.

•Anytime mode. We can stop the algorithm anytime, 
yielding the current solution. Thus, the algorithm 
utilizes as much time as we have, to build as good 
solution as it can within the given time.

5



Local search

Let 𝑋 be a set of all representations that include both 
feasible and infeasible ‘solutions’.
Let 𝑆 ⊆ 𝑋 be the set of feasible solutions.
We should select a set of transformations 𝐹 = {𝑓𝑖: 𝑆 ⟶ 𝑆}. 
For a current solution 𝑠 ∈ 𝑆, the set 𝑁 𝑠 = 𝑓𝑖 𝑠 : 𝑓𝑖 ∈ 𝐹
is called the neighborhood of 𝑠.
To design a good local search algorithm we should find a 
reasonable trade-off between the quality of the final 
solution (the larger 𝐹, the better) and the velocity of the 
algorithm.

6



Local search

The general scheme of LS for minimization problem.
1. Build the initial solution 𝑠 ∈ 𝑆. We can use a greedy 

algorithm or any other heuristics.
2. For the current solution 𝑠, analyze its neighborhood. 
3. If there is 𝑠′ ∈ 𝑁(𝑠) such that 𝑤 𝑠′ < 𝑤(𝑠), then make 𝑠′

the current solution (𝑠 = 𝑠′) and go to 2.
Otherwise, stop and return 𝑠 as the final solution.

Different LS algorithms for a certain problem differ in the set of 
transformations and the rule of selecting neighbor solution.

7



Local search

Let us study several LS heuristics for symmetric TSP.
1. Transpositions.
Feasible solutions are represented as vertex permutations. 
The set of transformations consists of transpositions, i.e. 
permutations that swap two items and keep other items 
fixed.
E.g., for feasible solution s = (1,2,3,4,5,6,7), its neighborhood
contains cycles (1,2,4,3,5,6,7), (5,2,3,4,1,6,7), (1,7,3,4,5,6,2)
and so on.

The neighborhood cardinality is 
𝑛 𝑛−1

2
= 𝑂 𝑛2 .

8



Local search

2. k-opt.

For integer k, a transformation is a procedure of the 
following kind:

1. Select k non-adjacent edges in the current solution.

2. Delete the selected edges from the current cycle.

3. Add k new edges that connect the endpoins of the 
deleted edges in a different way.

9



Local search

2-opt or 3-opt transformations are usually used.

An example of a 2-opt transformation:

10



Local search

The standard local search scheme (‘gradient descent’) 
has an important disadvantage: it is subject to stucking
in local optima.

11



Local search

Possible ways of overcoming this disadvantage allow 
the algorithm to move to a solution which is worse 
than the current solution.

a) Deterministic choice: let the algorithm move to the 
best neighbor even if it is worse than the current 
solution.

b) Randomized choice.

12



Local search

Deterministic choice: let the algorithm move to the 
best neighbor even if it is worse than the current 
solution.

Issue: the algorithm can (and usually does) loop 
infinitely.

Solution to this issue: tabu search.

13



Tabu search

In order to overcome looping, we prohibit moving to 
recently visited solutions or applying recently applied 
transformations.

The tabu list stores the given number (a predefined 
parameter) of recent solutions or transformations.

The size of tabu list should be defined empirically.

14



Tabu search

TabuSearch:

T := []

s := InitialSolution()

while (condition):

s' := the best of N(s) \ T

Add s’ to Т

s := s'

15



Tabu search

In order to overcome looping, we prohibit moving to 
recently visited solutions or applying recently applied 
transformations.

The tabu list stores the given number (a predefined 
parameter) of recent solutions or transformations.

The size of tabu list should be defined empirically.

16



Local search

Randomized version of LS: use random choices to let 
the algorithm get out from the local minimum vicinity.

a) Random choice of the initial solution.

b) Randomized choice of the next solution within the 
current neighborhood.

17



Local search

a) Random choice of the initial solution.
RandomizedLocalSearch:

Record = NULL

for i=1 to IterCount:

s := RandomSolution(x)

s' := LocalSearch(s)

if c(s') < c(Record)

Record := s'

18



Local search

b) Randomized choice of the next solution within the 
current neighborhood.

For each 𝑠′ ∈ 𝑁(𝑠) we assign the probability of moving 
to 𝑠′. This probability depends on 𝑤(𝑠′), but is non-
zero for any feasible solution.

Examples of algorithms of such type: Metropolis 
algorithm, Simulated Annealing.

19


