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Practical case
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Let us consider several sites and a set of roads that connect the sites.

The task is to repair some roads to satisfy the following conditions:

1) There is a way to go from any site to any other site by repaired roads.

2) The cost of repair is minimal. The estimated cost of repair is known for each

road.

This is a practical situation. Let us build a mathematical model for it.



Mathematical model
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Sites and roads can be represented as vertices and edges of graph 𝐺(𝑉, 𝐸).

The solutions can be represented as edge subset 𝐸′. Consider the partial graph

𝐺′ 𝑉, 𝐸′ . What are the conditions that 𝐺′ must satisfy?

1) There is a way to go from any site to any other site by repaired roads. => the

graph 𝐺′ 𝑉, 𝐸′ must be connected.

2) The cost of repair is minimal. => we need to build the minimal cost connected

graph.



Trees
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Tree is a connected acyclic graph, i.e. a graph 
without (undirected) cycles.

An acyclic (not necessarily connected) graph is 
called a forest.



Trees
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Theorem (properties of trees).
A graph 𝐺(𝑉, 𝐸) is a tree iff any of the following equivalent conditions 
hold:

1) G is connected and acyclic (contains no cycles).

2) G is acyclic, and a simple cycle is formed if any edge is added to G.

3) G is connected, but would become disconnected if any single 
edge is removed from G.

4) Any two vertices in G can be connected by a unique simple path.

5) G is connected and has n − 1 edges (𝑛 = |𝑉|).

6) G has no simple cycles and has n − 1 edges.



Minimum spanning tree
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So, the solutions must be a minimum spanning tree (MST).

✓ A tree, i.e. a connected acyclic subgraph.

✓ Spanning tree. Spanning subgraph is a connected subgraph that

contains all vertices of the graph.

✓Minimum spanning tree is a spanning tree of minimum weight.



Minimum spanning tree
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Weighted graph Spanning tree, weight = 57 Minimum spanning tree, weight = 17



MST: algorithms
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How can we build a MST for the given graph?

✓ A brute force search through all spanning trees of the given graph.

Unfortunately, the Cayley’s theorem states that in the worst case (for a

complete graph) the quantity of spanning trees for an n-vertex is 𝑛𝑛−2.

✓ Develop and apply more efficient algorithm.

For the problem of building a minimum spanning tree, we can apply a

greedy strategy.



Greedy algorithms

Key characteristics of a greedy algorithm:

1. Can solve an optimization problem.

2. Builds solution iteratively, adding one element 
after another.

3. At each step, adds the element which is the best at 
the current situation.

4. Does not revise the decisions (one-pass algorithm).
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Greedy algorithms

• One can construct many different greedy algorithms 
for a problem.

• Greedy solution may be bad (not optimal).

• Greedy algorithms are usually efficient.
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MST: algorithms
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A greedy strategy: start with an empty subgraph; add 
the lightest edge such that it does not create a cycle on 
the subgraph (the lightest safe edge).

• Kruskal’s algorithm: build a spanning forest, adding 
edges until there is one component (tree).

• Prim’s algorithm: build the tree, adding edges until it 
spans the graph.



MST: algorithms
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Prim’s algorithm

Kruskal’s algorithm

http://jeffe.cs.illinois.edu/teaching/algorithms/



Kruskal’s algorithm
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Given a connected graph 𝐺 𝑉, 𝐸 , 𝑉 = 𝑛, |𝐸| = 𝑚.

1. 𝑇 = ∅

2. Sort the set of edges by increasing their weights.

3. Scan the sequence of edges. For each edge:
• If the current edge is safe: add this edge to T.
• Otherwise: just skip this edge (=do nothing with it).



Kruskal’s algorithm
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Given a connected graph 𝐺 𝑉, 𝐸 , 𝑉 = 𝑛, |𝐸| = 𝑚.

1. 𝑇 = ∅

2. Sort the set of edges by increasing their weights.

3. Scan the sequence of edges. For each edge:
• If the current edge is safe: add this edge to T.
• Otherwise: just skip this edge (=do nothing with it).

𝑂(𝑚 log𝑚)

m iterations
???

𝑂(𝑛)



Kruskal’s algorithm: safety check
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Given the graph 𝐺 𝑉, 𝐸 , spanning forest T and the current 
edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸, how can we check whether 𝑒 is safe 
(=adding 𝑒 to T does not create a cycle)?

Red edges belong to T.

The blue and yellow edges are safe.

The green edge is unsafe.



Kruskal’s algorithm: safety check
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Given the graph 𝐺 𝑉, 𝐸 , spanning forest T and the current 
edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸, how can we check whether 𝑒 is safe?

Naïve approach: add the new edge and 

check graph T ∪ {𝑒} for presence of 

cycles. Algorithm: a modification of DFS.

Complexity: 𝑂 𝑚 = 𝑂(𝑛2) for each check 

and 𝑂 𝑚2 = 𝑂 𝑛4 for the total time.



Kruskal’s algorithm: safety check
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Given the graph 𝐺 𝑉, 𝐸 , spanning forest T and the current 
edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸, how can we check whether 𝑒 is safe 
(=adding 𝑒 to T does not create a cycle)?

Rule: 𝑒 = 𝑢, 𝑣 is safe iff its endpoints

𝑢 and 𝑣 belong to different components

of T; otherwise 𝑒 is unsafe.



Kruskal’s algorithm: safety check
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Theorem (properties of trees).
A graph 𝐺(𝑉, 𝐸) is a tree iff any of the following equivalent conditions 
hold:

1) G is connected and acyclic (contains no cycles).

2) G is acyclic, and a simple cycle is formed if any edge is added to G.

3) G is connected, but would become disconnected if any single 
edge is removed from G.

4) Any two vertices in G can be connected by a unique simple path.

5) G is connected and has n − 1 edges (𝑛 = |𝑉|).

6) G has no simple cycles and has n − 1 edges.



Kruskal’s algorithm: safety check
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Rule: 𝑒 = 𝑢, 𝑣 is safe iff its endpoints 𝑢 and 𝑣 belong to different 
components of T; otherwise 𝑒 is unsafe.

 We need to keep a component ID for each vertex, and we also need to 
update this information after adding a new edge to the forest.

 We need a Union-Find (Merge-Find) data structure that keeps a collection 
of disjoint subsets (components) of a set and implements operations:
• MakeSet(v): creates a set {𝑣}.
• Find(v): returns the unique ID of the subset containing 𝑣.
• Union(u,v): unions (merges) subsets containing 𝑢 and 𝑣 to a single subset.



Kruskal’s algorithm: safety check
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Theorem. Union-Find can be implemented with the following time 
complexities:

1) MakeSet takes 𝑂(1) time / operation; total time is 𝑂 𝑛 .

2) Find takes 𝑂 log 𝑛 time / operation; total time is 𝑂 𝑚 log 𝑛 .

3) Union takes 𝑂(1) time / operation; total time is 𝑂 𝑛 .

The total time complexity of Kruskal’s algorithm: 𝑂 𝑚 log𝑚 =
𝑂(𝑚 log 𝑛).



Kruskal’s algorithm
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We need to prove that Kruskal’s algorithm is correct. 
For this purpose we need the tree theorem and one 
of the minimality criteria for a spanning tree.



Trees
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Theorem (properties of trees).
A graph 𝐺(𝑉, 𝐸) is a tree iff any of the following equivalent conditions 
hold:

1) G is connected and acyclic (contains no cycles).

2) G is acyclic, and a simple cycle is formed if any edge is added to G.

3) G is connected, but would become disconnected if any single 
edge is removed from G.

4) Any two vertices in G can be connected by a unique simple path.

5) G is connected and has n − 1 edges (𝑛 = |𝑉|).

6) G has no simple cycles and has n − 1 edges.



Kruskal’s algorithm
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Consider a spanning tree 𝐺′ and 
an edge e not contained in 𝐺′. By 
theorem, the graph arising from 
𝐺′ by adding e contains a unique 
cycle. Let us denote this cycle by 
𝐶𝐺′(𝑒).



Kruskal’s algorithm
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Theorem (Cycle Criterion).

A spanning tree 𝐺′ 𝑉′, 𝐸′ is 
minimal iff for each non-tree 
edge 𝑥, 𝑦 ∈ 𝐸\𝐸′ and any 
edge 𝑢, 𝑣 ∈ 𝐶𝐺′(𝑥, 𝑦), the 
following condition holds: 
𝑤 𝑢, 𝑣 ≤ 𝑤(𝑥, 𝑦).
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