
Algorithms and Data Structures

Module 2

Lecture 6
Minimum spanning trees

Adigeev Mikhail Georgievich
mgadigeev@sfedu.ru

Practical case

2

Let us consider several sites and a set of roads that connect the sites.

The task is to repair some roads to satisfy the following conditions:

1) There is a way to go from any site to any other site by repaired roads.

2) The cost of repair is minimal. The estimated cost of repair is known for each

road.

This is a practical situation. Let us build a mathematical model for it.

Mathematical model

3

Sites and roads can be represented as vertices and edges of graph 𝐺(𝑉, 𝐸).

The solutions can be represented as edge subset 𝐸′. Consider the partial graph

𝐺′ 𝑉, 𝐸′ . What are the conditions that 𝐺′ must satisfy?

1) There is a way to go from any site to any other site by repaired roads. => the

graph 𝐺′ 𝑉, 𝐸′ must be connected.

2) The cost of repair is minimal. => we need to build the minimal cost connected

graph.

Trees

4

Tree is a connected acyclic graph, i.e. a graph
without (undirected) cycles.

An acyclic (not necessarily connected) graph is
called a forest.

Trees

5

Theorem (properties of trees).
A graph 𝐺(𝑉, 𝐸) is a tree iff any of the following equivalent conditions
hold:

1) G is connected and acyclic (contains no cycles).

2) G is acyclic, and a simple cycle is formed if any edge is added to G.

3) G is connected, but would become disconnected if any single
edge is removed from G.

4) Any two vertices in G can be connected by a unique simple path.

5) G is connected and has n − 1 edges (𝑛 = |𝑉|).

6) G has no simple cycles and has n − 1 edges.

Minimum spanning tree

6

So, the solutions must be a minimum spanning tree (MST).

✓ A tree, i.e. a connected acyclic subgraph.

✓ Spanning tree. Spanning subgraph is a connected subgraph that

contains all vertices of the graph.

✓Minimum spanning tree is a spanning tree of minimum weight.

Minimum spanning tree

7

Weighted graph Spanning tree, weight = 57 Minimum spanning tree, weight = 17

MST: algorithms

8

How can we build a MST for the given graph?

✓ A brute force search through all spanning trees of the given graph.

Unfortunately, the Cayley’s theorem states that in the worst case (for a

complete graph) the quantity of spanning trees for an n-vertex is 𝑛𝑛−2.

✓ Develop and apply more efficient algorithm.

For the problem of building a minimum spanning tree, we can apply a

greedy strategy.

Greedy algorithms

Key characteristics of a greedy algorithm:

1. Can solve an optimization problem.

2. Builds solution iteratively, adding one element
after another.

3. At each step, adds the element which is the best at
the current situation.

4. Does not revise the decisions (one-pass algorithm).

9

Greedy algorithms

• One can construct many different greedy algorithms
for a problem.

• Greedy solution may be bad (not optimal).

• Greedy algorithms are usually efficient.

10

MST: algorithms

11

A greedy strategy: start with an empty subgraph; add
the lightest edge such that it does not create a cycle on
the subgraph (the lightest safe edge).

• Kruskal’s algorithm: build a spanning forest, adding
edges until there is one component (tree).

• Prim’s algorithm: build the tree, adding edges until it
spans the graph.

MST: algorithms

12

Prim’s algorithm

Kruskal’s algorithm

http://jeffe.cs.illinois.edu/teaching/algorithms/

Kruskal’s algorithm

13

Given a connected graph 𝐺 𝑉, 𝐸 , 𝑉 = 𝑛, |𝐸| = 𝑚.

1. 𝑇 = ∅

2. Sort the set of edges by increasing their weights.

3. Scan the sequence of edges. For each edge:
• If the current edge is safe: add this edge to T.
• Otherwise: just skip this edge (=do nothing with it).

Kruskal’s algorithm

14

Given a connected graph 𝐺 𝑉, 𝐸 , 𝑉 = 𝑛, |𝐸| = 𝑚.

1. 𝑇 = ∅

2. Sort the set of edges by increasing their weights.

3. Scan the sequence of edges. For each edge:
• If the current edge is safe: add this edge to T.
• Otherwise: just skip this edge (=do nothing with it).

𝑂(𝑚 log𝑚)

m iterations
???

𝑂(𝑛)

Kruskal’s algorithm: safety check

15

Given the graph 𝐺 𝑉, 𝐸 , spanning forest T and the current
edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸, how can we check whether 𝑒 is safe
(=adding 𝑒 to T does not create a cycle)?

Red edges belong to T.

The blue and yellow edges are safe.

The green edge is unsafe.

Kruskal’s algorithm: safety check

16

Given the graph 𝐺 𝑉, 𝐸 , spanning forest T and the current
edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸, how can we check whether 𝑒 is safe?

Naïve approach: add the new edge and

check graph T ∪ {𝑒} for presence of

cycles. Algorithm: a modification of DFS.

Complexity: 𝑂 𝑚 = 𝑂(𝑛2) for each check

and 𝑂 𝑚2 = 𝑂 𝑛4 for the total time.

Kruskal’s algorithm: safety check

17

Given the graph 𝐺 𝑉, 𝐸 , spanning forest T and the current
edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸, how can we check whether 𝑒 is safe
(=adding 𝑒 to T does not create a cycle)?

Rule: 𝑒 = 𝑢, 𝑣 is safe iff its endpoints

𝑢 and 𝑣 belong to different components

of T; otherwise 𝑒 is unsafe.

Kruskal’s algorithm: safety check

18

Theorem (properties of trees).
A graph 𝐺(𝑉, 𝐸) is a tree iff any of the following equivalent conditions
hold:

1) G is connected and acyclic (contains no cycles).

2) G is acyclic, and a simple cycle is formed if any edge is added to G.

3) G is connected, but would become disconnected if any single
edge is removed from G.

4) Any two vertices in G can be connected by a unique simple path.

5) G is connected and has n − 1 edges (𝑛 = |𝑉|).

6) G has no simple cycles and has n − 1 edges.

Kruskal’s algorithm: safety check

19

Rule: 𝑒 = 𝑢, 𝑣 is safe iff its endpoints 𝑢 and 𝑣 belong to different
components of T; otherwise 𝑒 is unsafe.

 We need to keep a component ID for each vertex, and we also need to
update this information after adding a new edge to the forest.

 We need a Union-Find (Merge-Find) data structure that keeps a collection
of disjoint subsets (components) of a set and implements operations:
• MakeSet(v): creates a set {𝑣}.
• Find(v): returns the unique ID of the subset containing 𝑣.
• Union(u,v): unions (merges) subsets containing 𝑢 and 𝑣 to a single subset.

Kruskal’s algorithm: safety check

20

Theorem. Union-Find can be implemented with the following time
complexities:

1) MakeSet takes 𝑂(1) time / operation; total time is 𝑂 𝑛 .

2) Find takes 𝑂 log 𝑛 time / operation; total time is 𝑂 𝑚 log 𝑛 .

3) Union takes 𝑂(1) time / operation; total time is 𝑂 𝑛 .

The total time complexity of Kruskal’s algorithm: 𝑂 𝑚 log𝑚 =
𝑂(𝑚 log 𝑛).

Kruskal’s algorithm

21

We need to prove that Kruskal’s algorithm is correct.
For this purpose we need the tree theorem and one
of the minimality criteria for a spanning tree.

Trees

22

Theorem (properties of trees).
A graph 𝐺(𝑉, 𝐸) is a tree iff any of the following equivalent conditions
hold:

1) G is connected and acyclic (contains no cycles).

2) G is acyclic, and a simple cycle is formed if any edge is added to G.

3) G is connected, but would become disconnected if any single
edge is removed from G.

4) Any two vertices in G can be connected by a unique simple path.

5) G is connected and has n − 1 edges (𝑛 = |𝑉|).

6) G has no simple cycles and has n − 1 edges.

Kruskal’s algorithm

23

Consider a spanning tree 𝐺′ and
an edge e not contained in 𝐺′. By
theorem, the graph arising from
𝐺′ by adding e contains a unique
cycle. Let us denote this cycle by
𝐶𝐺′(𝑒).

Kruskal’s algorithm

24

Theorem (Cycle Criterion).

A spanning tree 𝐺′ 𝑉′, 𝐸′ is
minimal iff for each non-tree
edge 𝑥, 𝑦 ∈ 𝐸\𝐸′ and any
edge 𝑢, 𝑣 ∈ 𝐶𝐺′(𝑥, 𝑦), the
following condition holds:
𝑤 𝑢, 𝑣 ≤ 𝑤(𝑥, 𝑦).

	Слайд 1, Algorithms and Data Structures Module 2 Lecture 6 Minimum spanning trees
	Слайд 2, Practical case
	Слайд 3, Mathematical model
	Слайд 4, Trees
	Слайд 5, Trees
	Слайд 6, Minimum spanning tree
	Слайд 7, Minimum spanning tree
	Слайд 8, MST: algorithms
	Слайд 9, Greedy algorithms
	Слайд 10, Greedy algorithms
	Слайд 11, MST: algorithms
	Слайд 12, MST: algorithms
	Слайд 13, Kruskal’s algorithm
	Слайд 14, Kruskal’s algorithm
	Слайд 15, Kruskal’s algorithm: safety check
	Слайд 16, Kruskal’s algorithm: safety check
	Слайд 17, Kruskal’s algorithm: safety check
	Слайд 18, Kruskal’s algorithm: safety check
	Слайд 19, Kruskal’s algorithm: safety check
	Слайд 20, Kruskal’s algorithm: safety check
	Слайд 21, Kruskal’s algorithm
	Слайд 22, Trees
	Слайд 23, Kruskal’s algorithm
	Слайд 24, Kruskal’s algorithm

